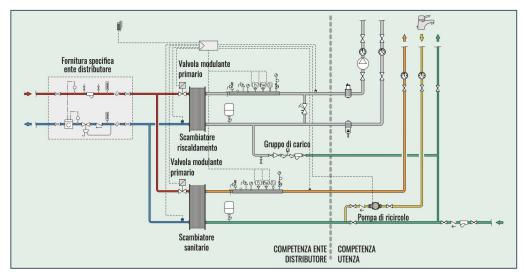
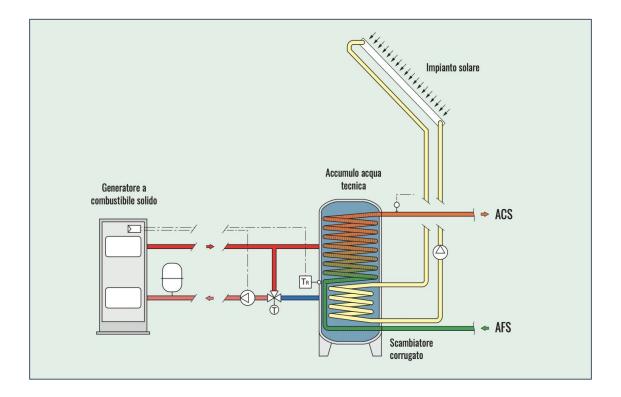


Tipologia di produzione

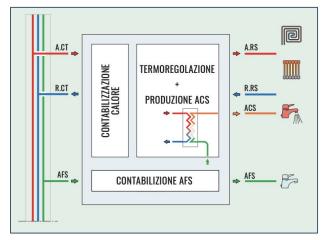


Tipologia di produzione

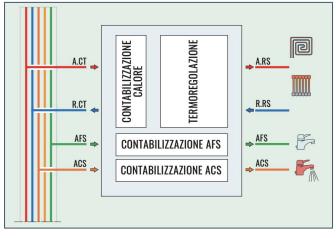
Produzione ACS istantanea da teleriscaldamento


Vantaggi:

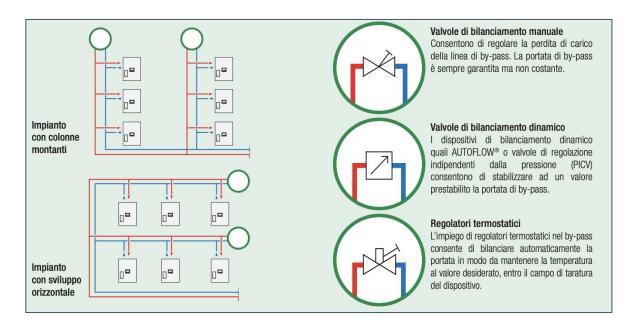
- Ridotto ingombro (no accumuli/bollitori per ACS).
- Gestione distinta e indipendente del riscaldamento e produzione ACS.
- Stazioni preassemblate trasportabili e collegabili.
- Minor rischio di stagnazione...


Svantaggi:

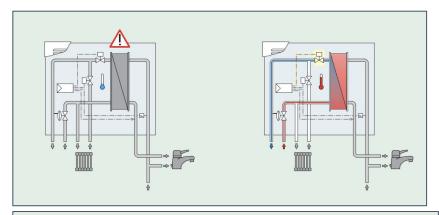
- Sovradimensionamento scambiatore per assicurare ACS nei periodi di maggior utilizzo.
- Verifica delle indicazioni del gestore della rete di teleriscaldamento su temperatura ACS in uscita nel circuito secondario (comprese tra 48 °C e 53 °C in ottemperanza alle disposizioni ex DPR 412/93). In tal caso, potrebbe non essere possibile eseguire disinfezioni e shock termici ad elevate temperature.


Buffer tank tecnico - schema funzionale

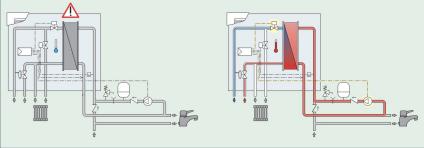
Produzione indiretta con satelliti d'utenza



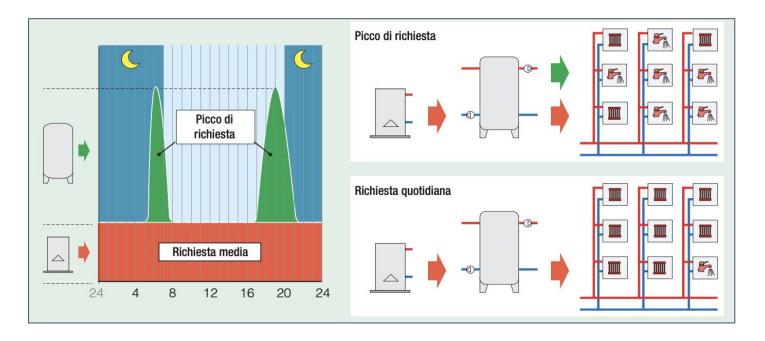
Produzione ACS istantanea con satellite d'utenza



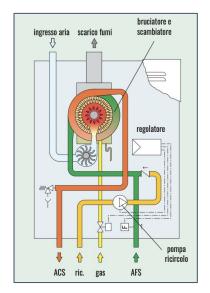
Produzione ACS ad accumulo centralizzata


Posizionamento e tipologia di by-pass di fine linea

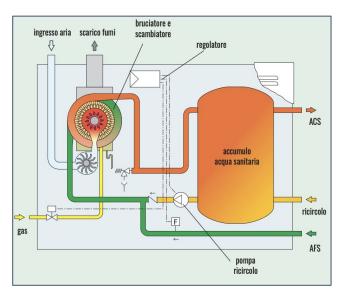
Funzioni particolari satelliti d'utenza



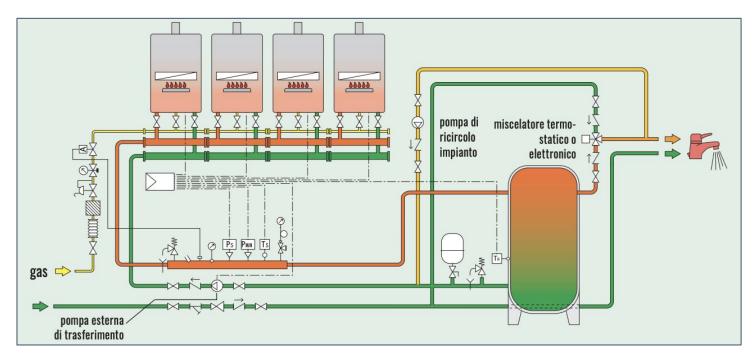
Principio di funzionamento della modalità di preriscaldo dello scambiatore


Principio di funzionamento della modalità di ricircolo

Andamento dei carichi termici



Moduli semplici con e senza accumulo



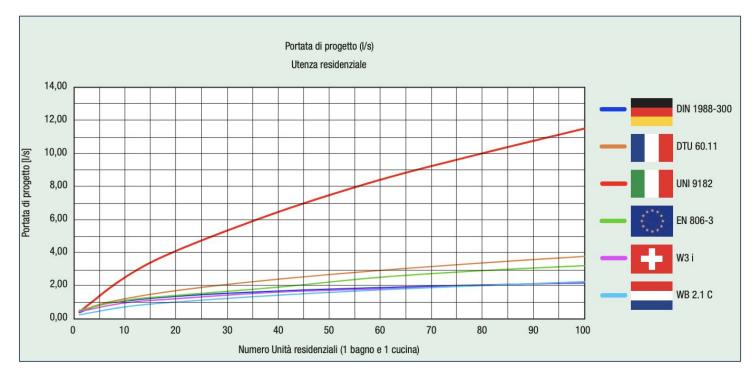
Scaldacqua a gas - schema funzionale

Scaldacqua a gas con accumulo - schema funzionale

Moduli in cascata

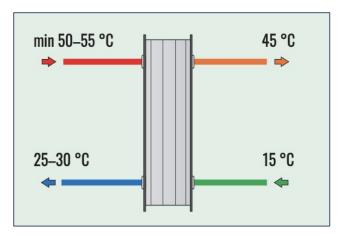
Dispositivi di controllo e sicurezza per lato acqua sanitaria

	AD ACCUMULO	CONTROLLO E PROTEZIONE ELETTRICA	SICUREZZ	A MECCANICA	ACCESSORI
DIRETTO		Termostato/sonda di regolazione Termostato/sonda di sicurezza	Valvola sicurezza Temperatura/ Pressione	Valvola di sicurezza Gruppo di sicurezza	Vaso d'espansione Riduttore di pressione
INDIRETTO		Termostato/sonda di regolazione Termostato/sonda di sicurezza	Valvola sicurezza Temperatura/ Pressione	Valvola di espansione Gruppo di espansione	Vaso d'espansione Riduttore di pressione


Dispositivi di controllo e sicurezza per lato acqua sanitaria

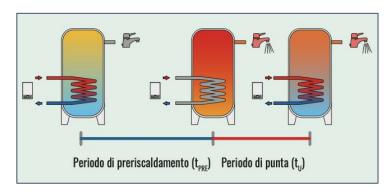
	ISTANTANEO	CONTROLLO E PROTEZIONE ELETTRICA	SICUREZZA MECCANICA	ACCESSORI
DIRETTO		Termostato/sonda di regolazione Termostato/sonda di sicurezza	Valvola di sicurezza (quando prevista dal costruttore)	Vaso d'espansione (in presenza di circuito di ricircolo)
INDIRETTO		Termostato/sonda di regolazione Termostato/sonda di sicurezza	Valvola di sicurezza (quando prevista dal costruttore)	Vaso d'espansione (in presenza di circuito di ricircolo)

Costo di gestione del ricircolo


Tipologia edificio	VILLETTA SINGOLA	PALAZZINA UFFICI	HOTEL	OSPEDALE
Numero di utenze	2 bagni	20 lavabi	100 camere	300 camere
Tipologia di gestione	2 h mattino 2 h metà giornata 3 h sera	diurno solo feriale	H18 - 7/7 (stop notturno)	H24 - 7/7
Lunghezza tubazioni (adduzioni + ricircolo)	50 m	300 m	1'000 m	3'000 m
Portata ricircolo	108 l/h	645 l/h	2 ⁻ 150 l/h	6 ⁻ 450 l/h
Dispersioni	2 [.] 038 kWh _t	13 ⁻ 480 kWh _t	67 ⁻ 253 kWh _t	262 ['] 800 kWh _t
Consumo pompa	20 €	95 €	335 €	940 €
Costi mantenimento annuali	200 €	1'300 €	6'400€	24 700 €
Costi mantenimento annuali (H24- 7/7)	470 €	2'600 €	8'400 €	24′700 €
Risparmio percentuale	-57 %	-50 %	-24 %	-

Confronto portate di progetto

Dimensionamento scambiatori


Temperature tipiche di un produttore istantaneo di ACS indiretto

Potenza di scambio termico [kW]								
G			ΔT [°C]					
[l/min]	30	35	40	45	50			
10	21	24	28	31	35			
20	42	49	56	63	70			
30	63	73	84	94	104			
40	84	97	111	125	139			
50	104	122	139	157	174			
100	209	244	278	313	348			
200	418	487	557	626	696			
300	626	731	835	940	1044			

Potenza degli scambiatori istantanei al variare della portata di ACS e del salto termico

Dimensionamento produttori ad accumulo

Preriscaldamento e utilizzo dell'accumulo di ACS

$$P = \frac{Q}{t_{PRE} + t_U} \cdot (T_{ACS} - T_{AFS}) \cdot \frac{Cp}{3600}$$

P = Potenza [kW],

Q = Consumo totale ACS [I]

t_{PRE} = Periodo di preriscaldamento [h]

 t_{U} = Periodo di punta [h]

T_{ACS} = Temperatura distribuzione ACS [°C]

T_{AFS} = Temperatura di ingresso AFS [°C]

Cp = Calore specifico acqua = 4,186 KJ/kg K

$$P = \frac{G \cdot t_E}{t_{PRE} + t_U} \cdot (T_{ACS} - T_{AFS}) \cdot \frac{Cp}{3600}$$

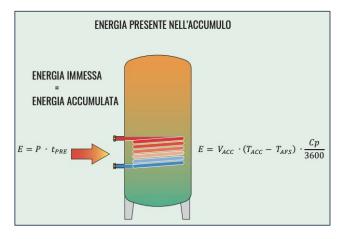
P = Potenza [kW],

G = Portata di progetto [l/h]

 t_E = Periodo di effettivo utilizzo [h]

t_{PRE} = Periodo preriscaldamento [h]

t_U = Periodo di punta [h]


T_{ACS} = Temperatura distribuzione ACS [°C]

 $T_{AFS} = Temperatura di ingresso AFS [°C]$

Cp = Calore specifico acqua = 4,186 KJ/kg K

Determinazione volume dell'accumulo

$$V_{ACC} = Q \cdot \frac{(T_{ACS} - T_{AFS})}{(T_{ACC} - T_{AFS})} \cdot \frac{t_{PRE}}{t_{PRE} + t_U}$$

V_{ACC} = Volume accumulo [I]

Q = Consumo totale ACS [I]

T_{ACS} = Temperatura distribuzione ACS [°C]

T_{AFS} = Temperatura di ingresso AFS [°C]

T_{ACC} = Temperatura accumulo [°C]

t_{PRF} = Periodo preriscaldamento [h]

t_u = Periodo di punta [h]

Tabella riassuntiva calcolo bollitori

accumulo				Volume b	ollitore [l]			Tipologia	a utenza
[°C]	250	500	800	1000	1500	2000	3000	5000	, ,	
50	2	4	7	9	14	21	31	64	n. appartamenti 1 bagno	
60	2	5	9	11	17	26	39	80		
70	3	7	11	14	23	31	53	112	i bagilo	Docidonzialo
50	1	3	5	7	10	14	24	40		Residenziale
60	2	4	7	9	13	18	30	57	n. appartamenti 2 bagni	
70	2	5	8	10	16	24	36	73	2 Dayılı	
50	15	29	47	58	87	117	175	292		
60	18	36	58	73	109	146	219	365		Uffici
70	22	44	70	88	131	175	263	438		
50	4	8	14	17	26	35	53	89		
60	5	11	17	22	33	44	67	112	n. camere	Alberghi
70	6	13	21	26	40	53	80	134		
50	-	11	17	22	33	44	66	111		
60	-	13	22	27	41	55	83	138	n. posti letto	Ospedali
70	-	16	26	33	50	66	100	166		

Dimensionamento tabellare moduli in cascata

ESEMPIO

Dati di progetto

Portata di progetto calcolata: 60 l/min Temperatura di acqua fredda in ingresso: 15 °C Temperatura di mandata di progetto: 65 °C

Numero di moduli	1	2	3	4	5
Potenza unità (kW)	30	60	90	120	150
Differenza di temperatura desiderata (°C)		Massima	portata garan	tita (I/min)	
40	19	38	58	77	96
50	16	32	48	64	80
60	13	26	39	52	65
70	11	22	33	44	55

Dalle condizioni di progetto si ottiene una differenza di temperature ΔT di 50 °C ed una portata di progetto di 60 l/min.

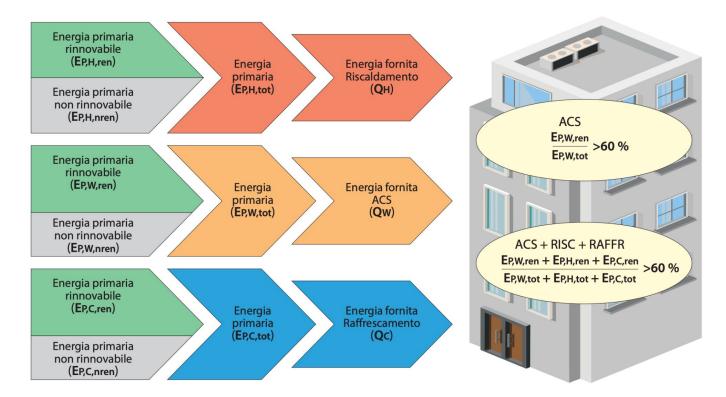
Partendo dal dato ΔT si individua la riga corrispondente, nella quale si va scegliere la portata massima garantita immediatamente superiore a quella di progetto. Incrociando così i dati, il risultato finale è che sono necessari **4 moduli per una potenza totale delle unità di 120 kW**.

Dimensionamento tabellare moduli e dimensione accumulo

ESEMPIO

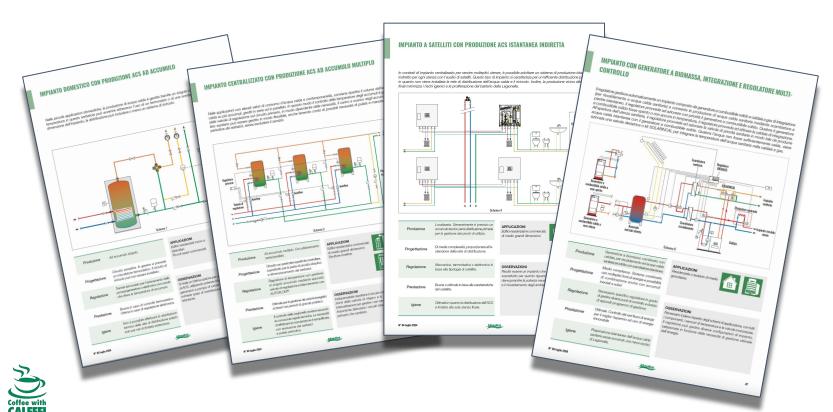
Dati di progetto

Portata di progetto calcolata: 60 l/min
Temperatura acqua fredda in ingresso: 15 °C
Temperatura di mandata di progetto: 65 °C
Periodo di picco: 1h mattino e 1 h sera
Fabbisogno ACS nel periodo picco: 3000 l/h

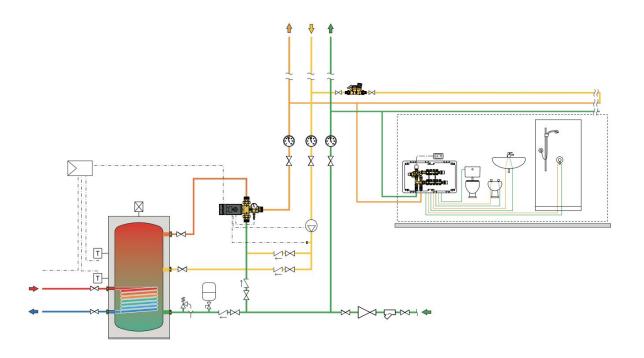

ΔT (°C)	50								
Volume accumulo (I)		300		500					
Numero di moduli	Produzione istantanea + accumulo (I/h)	Produzione istantanea (I/h)	Tempo di ricarica accumulo (min)	Produzione istantanea + accumulo (I/h)	Produzione istantanea (I/h)	Tempo di ricarica accumulo (min)			
1	1260	960	24	1460	960	40			
2	2220	1920	12	2420	1920	20			
3	3180	2880	8	3380	2880	13			
4	4140	3840	6	4340	3840	10			
5	5100	4800	5	5300	4800	8			

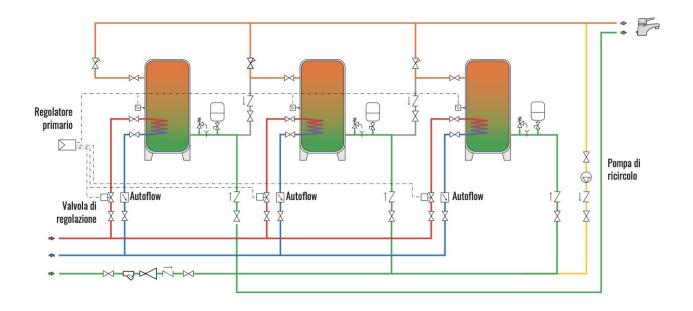
L'accumulo deve essere dimensionato per coprire il fabbisogno di picco senza richiedere che i moduli di produzione lavorino alla massima capacità ininterrottamente. In queste applicazioni esiste una tabella per ogni ΔT . In questo caso si utilizzerà quella relativa ad un ΔT di progetto di 50 °C. Considerando un picco di utilizzo di 3000 l/h si va a scegliere il valore di produzione istantanea + accumulo in grado di soddisfare questo valore. Ad esempio questa condizione è soddisfatta con 3 moduli istantanei con un singolo accumulo da 300 litri (valore reale 3180 l/h), oppure 3 moduli istantanei con un singolo accumulo da 500 l (valore reale 3380 l/h). La scelta è a discrezione del progettista.

Questo garantirà il picco orario, anche se la produzione istantanea dei moduli non sarebbe sufficiente. Dopo l'ora di picco stimata, l'accumulo sarà in grado di riportarsi in temperatura rispettivamente dopo soli 8 minuti o 13 minuti.

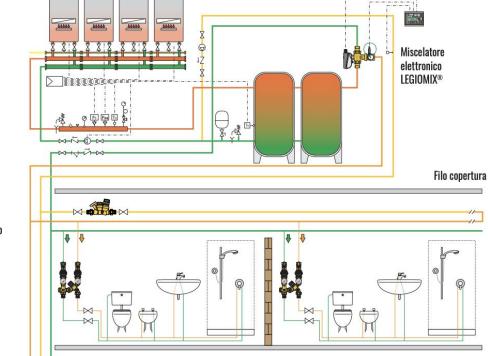


Prestazioni energetiche degli edifici - utilizzo energie rinnovabili



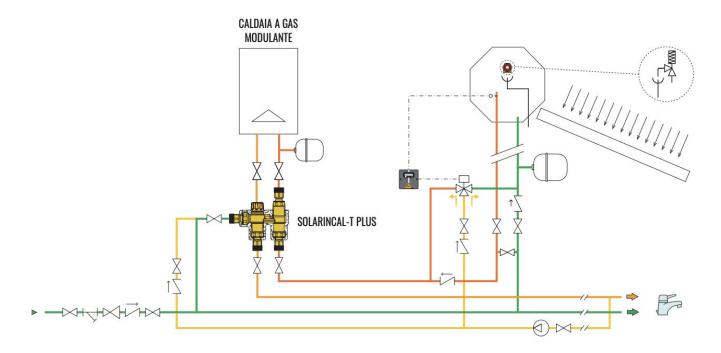

Schemi impiantistici

Impianto centralizzato con produzione acs ad accumulo singolo


Impianto centralizzato con produzione acs ad accumulo multiplo

Impianto centralizzato con produzione mista, con moduli a cascata ed

accumuli



Regolatore termostatico con ritegno incorporato

> Gruppo controllo pressione e temperatura

Impianto solare con integrazione termica e circuito di ricircolo

CALEFFIHydronic Solutions

S.R. 229, n. 25 28010 Fontaneto d'Agogna (NO) Italy Tel. +39 0322 8491 info@caleffi.com www.caleffi.com

GRAZIE PER L'ATTENZIONE THANK YOU!