

NEGLI EPISODI PRECEDENTI...

Negli episodi precedenti...

COFFEE WITH CALEFFI del 07 maggio 2020

La centrale termica: I componenti INAIL (Ex ISPESL)

- · Campo di applicazione
- I componenti fondamentali
- Nozioni utili
- Obblighi
- Domande frequenti
- · Consigli utili

COFFEE WITH CALEFFI del 10 dicembre 2020

Raccolta R: Cerchiamo di fare chiarezza

- Esempi impiantistici
- La somma di potenze e la barriera idraulica
- Dubbi e domande

IL CAMPO DI APPLICAZIONE, FACCIAMO UN RIPASSO

Quando si applica la Raccolta R?

R.1.A.1

«Le presenti disposizioni, emanate come specificazioni tecniche applicative del Titolo II del D.M. 1.12.75 ai sensi dell'art. 26 del decreto medesimo, si applicano agli impianti centrali di riscaldamento utilizzanti acqua calda sotto pressione con temperatura non superiore a 110°C, e potenza nominale massima complessiva dei focolari (o portata termica massima complessiva dei focolari) superiore a 35kW.»

R.1.A.2

«Per impianto centrale di riscaldamento si intende uno o più circuiti idraulici ad acqua calda sotto pressione, con vaso di espansione aperto o chiuso, servito da generatore singolo o disposto in batteria, da generatore modulare, da scambiatore di calore, e funzionante con combustibili solidi, liquidi o gassosi o con sorgenti termiche con rischio di surriscaldamento»

R.1.A.3

«Per generatori di calore soggetti alle prescrizioni di cui al D.M. 1.12.75 si intendono le caldaie, a fuoco diretto o non, alimentate da combustibile solido, liquido, gassoso e gli scambiatori di calore il cui primario è alimentato da fluido avente temperatura superiore a 110 °C. »

Quando si applica la Raccolta R?

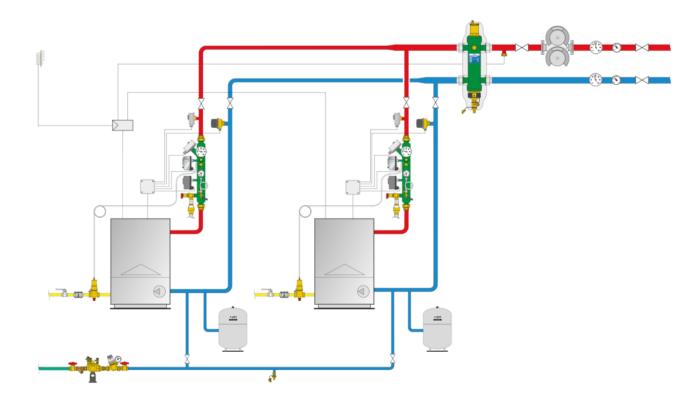
Tipologie di impianti che rientrano nel campo di applicazione della Raccolta R ed. 2009

Vaso d'espansione	Caratteristiche dell'impianto		
	Pressione d'esercizio: > 1 bar		
Aperto	Temperatura d'esercizio: < 110 °C		
Chiuso	Potenza nominale: > 35 kW		

Combustibili	Generatori
Liquido	Singolo
Solido	In batteria
Gassoso	Modulare
Sorgenti termiche a rischio surriscaldamento	Scambiatore di calore*

* Gli scambiatori di calore devono essere alimentati al primario con temperature > 110 °C per ricadere nel campo di applicazione della Raccolta R

Generatori modulari e generatori in batteria, quali sono le differenze?


«Il generatore modulare deve intendersi predisposto dal fabbricante quando questi fornisce:

- il generatore modulare completo di ogni accessorio oppure;
- i singoli moduli termici insieme con un disegno esecutivo ove siano indicati tutti i componenti sia elettrici sia meccanici costituenti il generatore modulare completo, le relative dimensioni ed i collegamenti atti a garantire il buon funzionamento e la sicurezza come previsto dal progetto del fabbricante.»

Generatori modulari e generatori in batteria, quali sono le differenze?

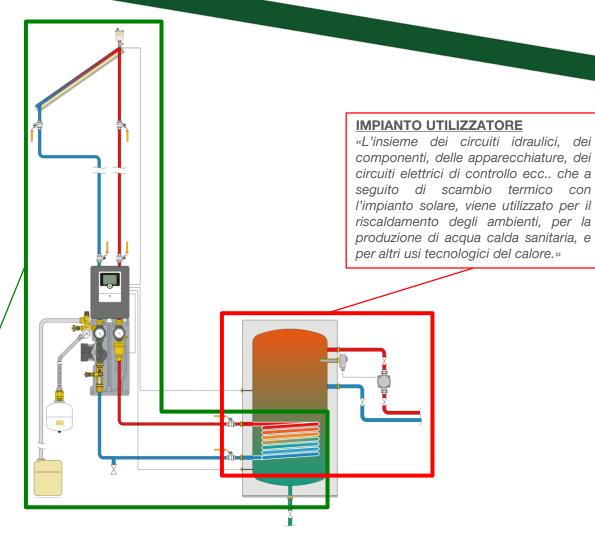
I generatori in batteria possono essere anche di produttori differenti, ma collegati al medesimo impianto tramite un unico collettore principale.

Gli impianti a pannelli solari

«Le seguenti disposizioni si applicano a tutti gli **impianti solari** produttori di energia termica per il **riscaldamento degli ambienti**, per la **produzione di acqua calda sanitaria**, e per **altri usi tecnologici** del calore, con **superficie** di apertura non inferiore a **50 m2** e <u>comunque</u> con **potenzialità nominale utile complessiva superiore a 35 kW.»**

Superficie	Potenza	Campo di applicazione
< 50 m ²	< 35 kW	NO
< 50 m ²	> 35 kW	Si
> 50 m ²	< 35 kW	NO
> 50 m ²	> 35 kW	SI

«Sono esclusi dalle seguenti disposizioni tutti i generatori solari che contengono fluidi termovettori in pressione con temperatura sul circuito primario **inferiori a 110°C** in condizioni di funzionamento e di stagnazione, nel seguito definita. In tal caso gli stessi dovranno essere provvisti dei dispositivi previsti al Cap.R.1.A.»


Gli impianti a pannelli solari

GENERATORE SOLARE

«Costituito da uno o più collettori solari che alimentano l'impianto nonché dalle tubazioni di collegamento del circuito primario come di seguito definito.»

CIRCUITO SOLARE

«L'insieme dei circuiti idraulici, dei componenti, delle apparecchiature, dei circuiti elettrici di controllo e attuazione progettati e realizzati per assorbire la radiazione solare e convertirla in energia termica per renderla disponibile a uno o più circuiti utilizzatori.»

I DISPOSITIVI OBBLIGATORI

I dispositivi di sicurezza

«Dispositivi automatici destinati ad impedire che siano superati i valori limiti prefissati di pressione e temperatura dell'acqua»

Tubazione di sicurezza

- Valvola di sicurezza
- Valvola di scarico termico
- Valvola di intercettazione combustibile
- Valvola di intercettazione del fluido primario auto azionata
- Sistema di intercettazione del fluido primario negli scambiatori di calore

I dispositivi di protezione

«Dispositivi destinati a proteggere il generatore prima dell'entrata in funzione dei dispositivi di sicurezza»

- Termostato di regolazione o di limitazione o di esercizio
- Termostato di blocco o di sicurezza
- · Pressostato di blocco o di sicurezza
- Dispositivo di protezione livello/pressione minima

«Ogni dispositivo di protezione deve essere accettato dall'ISPESL.

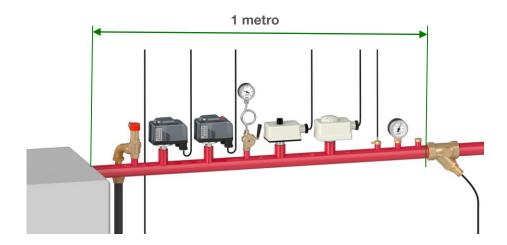
Possono essere riconosciuti senza ulteriori oneri quei dispositivi

provenienti dai paesi appartenenti allo Spazio Economico Europeo che
garantiscono la medesima funzionalità per lo scopo a cui essi sono
destinati.»

Nella circolare INAIL 1539 viene specificato che:
«saranno automaticamente accettati i dispositivi di protezione dotati di
certificazione di prodotto (direttiva 2014/68/UE) costruiti per l'utilizzo su
impianti ad acqua calda.»

I dispositivi obbligatori e le loro caratteristiche

«Dispositivi **indicatori di parametri di esercizio** (atti a consentire la misura dei parametri di esercizio: pressione, temperatura, livello ecc.) nonché dispositivi di **allarme**.»


- Termometro
- Pozzetto di controllo
- Manometro
- Rubinetto manometro campione

- · Controllore di flusso
- Allarme ottico
- · Allarme acustico

I dispositivi obbligatori e le loro caratteristiche

«Qualora i generatori non siano provvisti di tutti i dispositivi, quelli mancanti possono essere installati sulla tubazione di mandata del generatore entro una distanza, all'esterno del mantello, **non superiore ad 1 metro.**»

LA BARRIERA IDRAULICA

La somma di potenze negli impianti

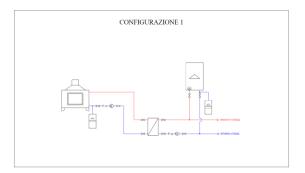
La **circolare INAIL 2974/2011** chiarisce il concetto secondo cui in un impianto dotato di più generatori, se non adeguatamente separati da una barriera idraulica, la potenzialità di tutti i generatori deve essere sommata per ottenere la potenzialità effettiva dell'intero sistema.

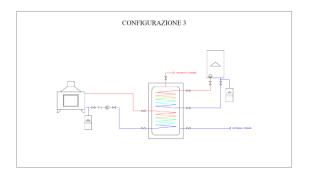
«[...] si ritiene che, qualora lo **scambiatore costituisca una barriera idraulica** tra i rispettivi fluidi termo vettori, ai soli fini della denuncia di impianto secondo la Raccolta R al circuito secondario, **non si debba procedere alla somma delle potenzialità** [...]»

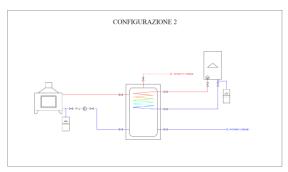
Per gli impianti integrati da uno o più generatori, in caso di assenza di barriera idraulica, si deve procedere con la somma delle potenze

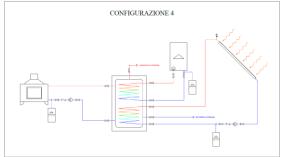
$$Q_{Sistema} = Q_{Generatore 1} + Q_{Generatore 2} + Q_{Generatore 3}$$

La barriera idraulica

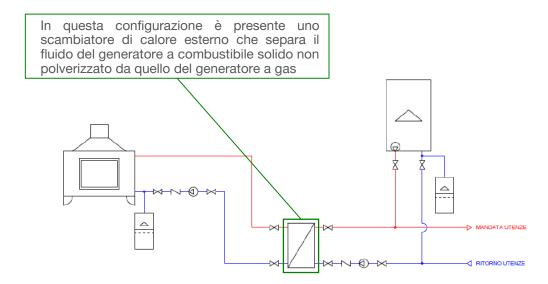

La Raccolta R non offre alcuna definizione di barriera idraulica.


In base ad una risposta da parte di INAIL al quesito del CTI del 01/02/2016 è comunque possibile risalire a quali dispositivi vengano accettati come barriera idraulica


QUESITO:

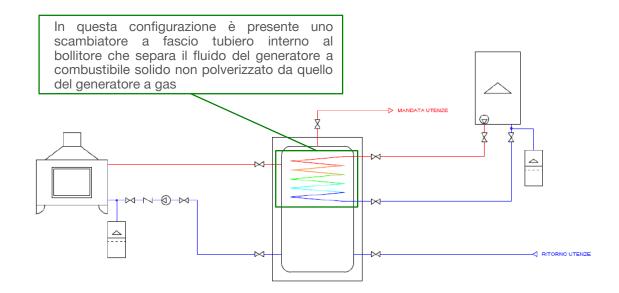

«Scambiatori a piastre, a fascio tubiero o altra soluzione con garanzia di separazione idraulica tra i singoli circuiti, possono essere definiti sistemi di separazione atti a evitare la somma delle potenze al focolare di generatori comunque alimentati?

Seguono alcuni esempi puramente indicativi di separazioni dei circuiti da considerarsi validi sia per le configurazioni a vaso aperto sia a vaso chiuso (configurazioni 1 – 2 – 3 – 4). Si puntualizza inoltre che il parere richiesto si riferisce esclusivamente alla definizione di "barriera idraulica". »



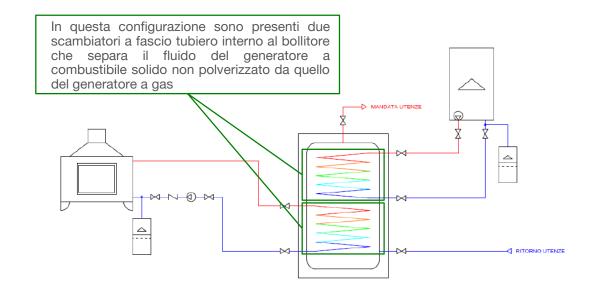
La barriera idraulica - No somma di potenze

Risposta in riferimento alle configurazioni 1, 2 e 3:


«Premesso che le caldaie a gas e a combustibile solido non polverizzato siano costruite e certificate per un esercizio a temperatura inferiore ai 110°C si ritiene che, ai soli fini della denuncia di impianto di cui agli art. 16 e 18 del DM 1/12/75 e della Raccolta R - Edizione 2009, nelle configurazioni in oggetto non si debba procedere alla somma delle singole potenzialità al focolare»

La barriera idraulica - No somma di potenze

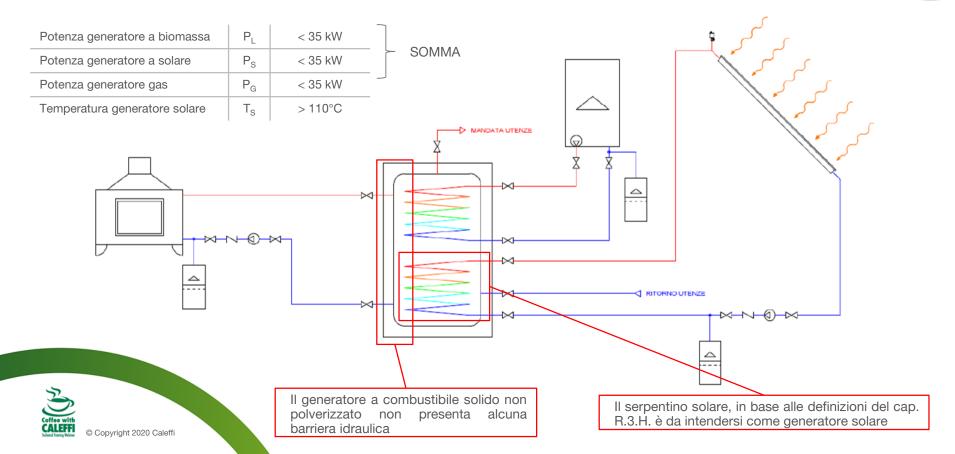
Risposta in riferimento alle configurazioni 1, 2 e 3:


«Premesso che le caldaie a gas e a combustibile solido non polverizzato siano costruite e certificate per un esercizio a temperatura inferiore ai 110°C si ritiene che, ai soli fini della denuncia di impianto di cui agli art. 16 e 18 del DM 1/12/75 e della Raccolta R - Edizione 2009, nelle configurazioni in oggetto non si debba procedere alla somma delle singole potenzialità al focolare»

La barriera idraulica - No somma di potenze

Risposta in riferimento alle configurazioni 1, 2 e 3:

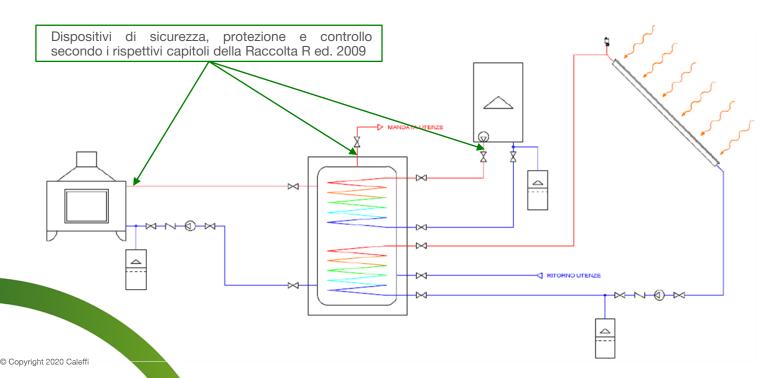
«Premesso che le caldaie a gas e a combustibile solido non polverizzato siano costruite e certificate per un esercizio a temperatura inferiore ai 110°C si ritiene che, ai soli fini della denuncia di impianto di cui agli art. 16 e 18 del DM 1/12/75 e della Raccolta R - Edizione 2009, nelle configurazioni in oggetto non si debba procedere alla somma delle singole potenzialità al focolare»


La barriera idraulica - SOMMA DI POTENZE

Risposta in riferimento alla configurazione 4:

«Premesso che il primario del circuito solare sia esercito a temperatura $T_s>110^{\circ}C$ e che le caldaie a gas e a combustibile solido non polverizzato siano costruite e certificate per un esercizio a temperature inferiori ai 110°C, la configurazione in oggetto è soggetta a denuncia di impianto di cui agli articoli 16 e 18 del DM 1/12/75 e della Raccolta R - Edizione 2009 nel caso in cui risulti $P_s+P_L>35$ kW. In tal caso la denuncia comprenderà anche la caldaia a gas, P_G , se questa supera i 35 kW»

Potenza generatore a biomassa	P_L	< 35 kW	
Potenza generatore a solare	Ps	< 35 kW	In questa configurazione è presente uno scambiatore a fascio tubiero per separare il
Potenza generatore gas	P_{G}	< 35 kW	fluido primario del generatore a gas
Temperatura generatore solare	Ts	> 110°C	
			MANDATA UTENZE MITORNO UTENZE
3			

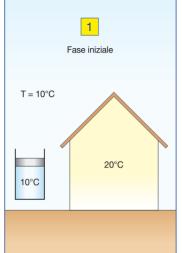

La barriera idraulica - SOMMA DI POTENZE

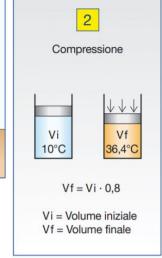
La barriera idraulica - SOMMA DI POTENZE

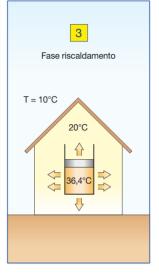
Risposta in riferimento alla configurazione 4:

«[...] In caso di denuncia, i dispositivi di sicurezza, protezione e controllo devono essere installati a **valle della caldaia a legna** (Cap. R.3.C.), a **valle del circuito solare** (mandata utente - R.3.H.) ed eventualmente a **valle della caldaia a gas** (R.3.A. o R.3.B.)»

LE POMPE DI CALORE E LA RACCOLTA R

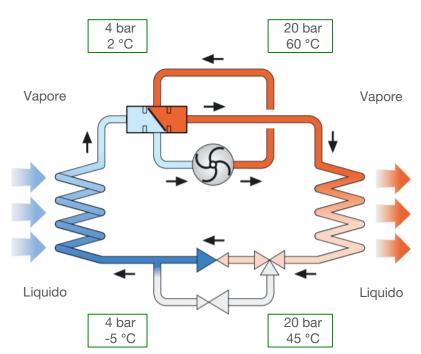

Cosa sono le pompe di calore


Le pompe di calore sono macchine in grado di derivare calore da una sorgente a temperatura più bassa mediante un apposito ciclo termodinamico.


Sono essenzialmente composte da un circuito di tipo chiuso entro il quale viene continuamente compresso e fatto espandere un apposito fluido. Ad ogni compressione e ad ogni espansione (cioè ad ogni ciclo di lavoro) il fluido sottrae un po' di calore alla sorgente fredda e lo cede a quella calda.

ESEMPIO

- FASE 1 Acquisizione della sorgente fredda
- FASE 2 Compressione
 - Dopo la compressione la quantità di calore iniziale riscalda un minor volume della sorgente
 - L'energia utilizzata per la compressione è ceduta alla sorgente
- FASE 3 Riscaldamento



Come lavorano le pompe di calore

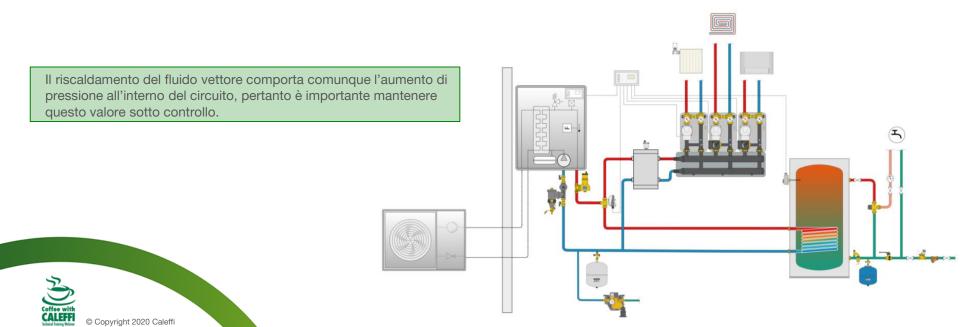
Compressione

Rilascio energia calorifica

energia calorifica Assorbimento

Le pompe di calore ricadono nel campo di applicazione della Raccolta R?

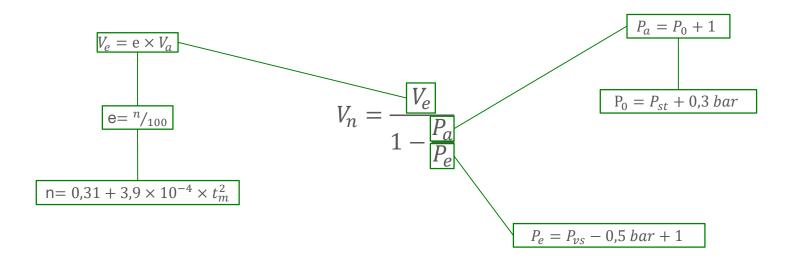
DEFINIZIONI CAMPO DI APPLICAZIONE RACCOLA R ED. 2009			POMPA DI CALORE	
Vaca d'agnanciona	Aperto		Non viene mai realizzato	
Vaso d'espansione —	Chiuso	Si	Realizzazione tradizionale	
Pressione d'esercizio > 1 bar		Si	Normalmente tra 1 e 3 bar	
Caratteristiche dell'impianto	Temperatura d'esercizio < 110 °C	Si	Temperatura massima 60 - 65 °C	
	Potenza nominale > 35 kW	Si	Possibile, con dimensioni importanti delle macchine	
	Liquido		Le pompe di calore elettrice e ad assorbimento	
Combustibile	Solido	NO	scambiano energia con: • Aria	
	Gassoso		Acqua Terreno	
	Sorgente termica a rischio surriscaldamento		Tutte sorgenti non citate nel campo di applicazione della Raccolta R	

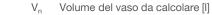


Nessuna delle fonti primarie utilizzate dalle pompe di calore risulta tra quelle citate nel campo di applicazione della Raccolta R ed. 2009

Le pompe di calore e i dispositivi di sicurezza, protezione e controllo

Essendo le pompe di calore naturalmente escluse dal campo di applicazione della Raccolta R, non sono soggette alla redazione delle pratiche INAIL per la denuncia di primo impianto e relative verifiche periodiche, a prescindere dalla loro potenza nominale.


Negli impianti a pompa di calore posso essere utilizzati dispositivi di sicurezza, protezione e controllo ordinari.



L'espansione negli impianti a pompa di calore

Per loro natura, le pompe di calore non sono in grado di raggiungere temperature superiori ai 65°C sfruttando il loro ciclo di lavoro.

L'incremento di temperatura che viene esercitato sul fluido vettore è in grado di provocarne l'espansione e, di conseguenza, generare un aumento di pressione all'interno del circuito chiuso.

V_a Contenuto d'acqua nell'impianto [l]

Ve Volume di espansione dovuto al riscaldamento dell'acqua [l]

P_a Pressione assoluta iniziale lato gas [bar]
P_e Pressione assoluta finale lato gas [bar]

st Pressione idrostatica nel punto di installazione [bar]

P_{vs} Pressione di taratura della valvola di sicurezza [bar]

P₀ Pressione di precarica del vaso lato gas [bar]

Coefficiente d'espansione dell'acqua

Temperatura massima d'esercizio [°C]

Coffee with CALEFFI

Il controllo della pressione d'esercizio

Al fine di mantenere sotto controllo la pressione d'esercizio dell'impianto è importante prevedere, qualora non presenti o non sufficienti:

Valvola di sicurezza

Essendo le pompe di calore escluse dalla raccolta R, è sufficiente una valvola di **tipo ordinario**

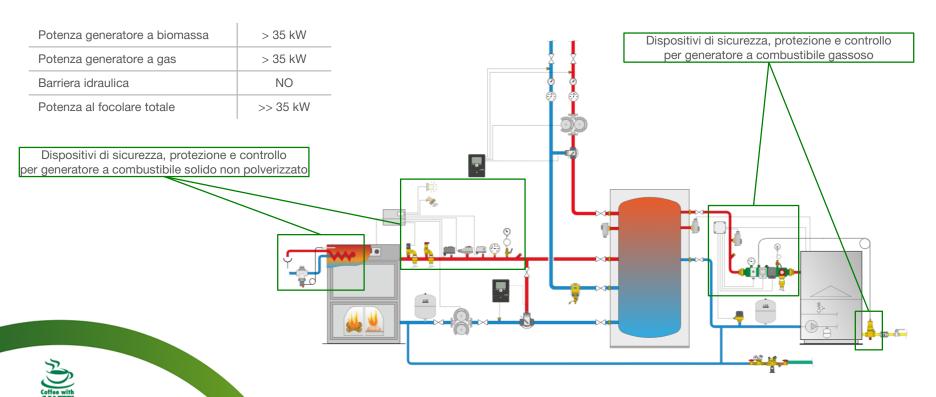
Vaso d'espansione

Va dimensionato tenendo conto della **temperatura massima** raggiungibile e del contenuto d'acqua minimo richiesto dal produttore della PDC

Diamo uno sguardo all'interno di una PDC

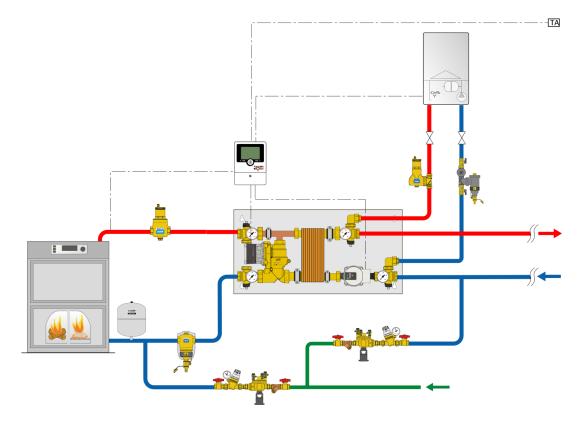
Solitamente le pompe di calore includono un serbatoio di espansione che limita il volume del circuito idraulico. Se il volume d'espansione richiesto per l'impianto è superiore ai valori riportati nella documentazione tecnica del generatore è necessario installare un ulteriore vaso d'espansione adeguato al volume aggiuntivo.

In macchina solitamente è presente un vaso da 6-8 lt. Se tale capacità non è sufficiente, deve essere installato nell'impianto un vaso supplementare, per coprire la differenza.

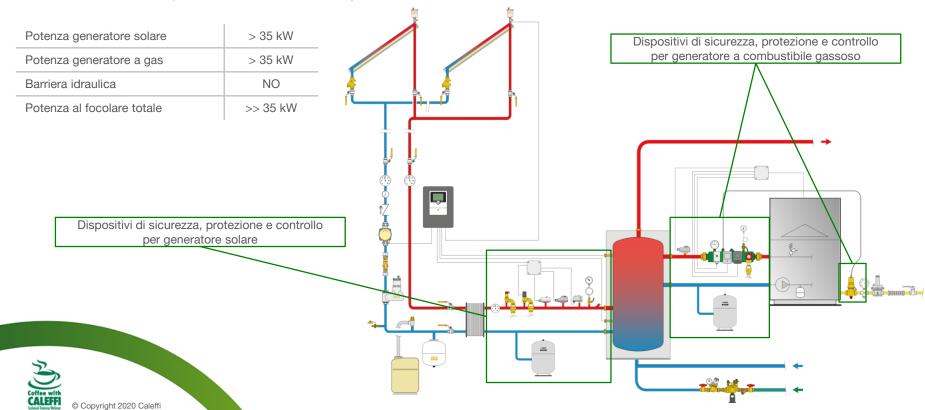

 $V_{minimo} = V_{vaso\ macchina} + V_{vaso\ aggiuntivo}$

GLI IMPIANTI IBRIDI

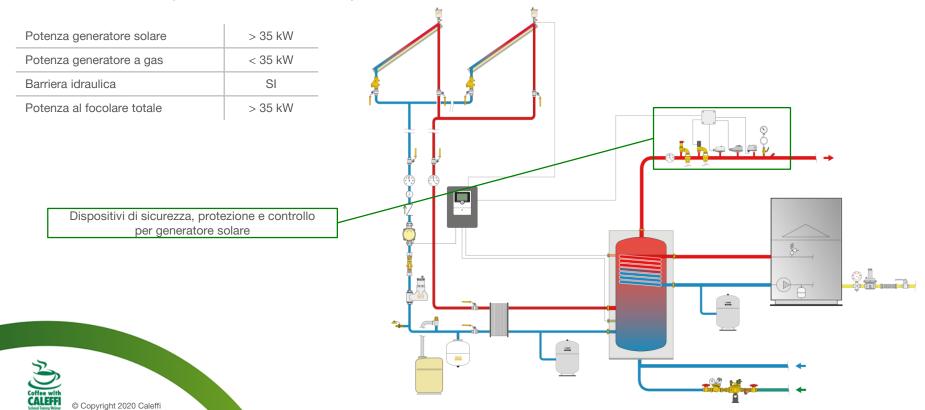
Caldaia a combustibile gassoso in combinazione con caldaia a combustibile solido non polverizzato.



Caldaia a combustibile gassoso in combinazione con caldaia a combustibile solido non polverizzato.

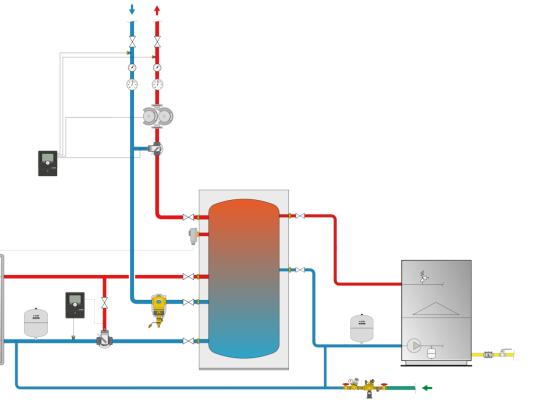

Potenza generatore a biomassa Potenza generatore a gas	< 35 kW	Dispositivi di sicurezza, protezione e controllo per entrambi i generatori
Barriera idraulica	NO	
Potenza al focolare totale	> 35 kW	
	Ç.	

Caldaia a combustibile gassoso in combinazione con caldaia a combustibile solido non polverizzato.


Potenza generatore a biomassa	< 35 kW
Potenza generatore a gas	< 35 kW
Barriera idraulica	SI
Potenza al focolare totale	< 35 kW

Caldaia a combustibile gassoso in combinazione con pannelli solari.

Caldaia a combustibile gassoso in combinazione con pannelli solari.


Caldaia a combustibile gassoso in combinazione con pompa di calore.

Potenza pompa di calore	> 35 kW	∳ ↑ T T	
Potenza generatore a gas	> 35 kW	<u> </u>	Dispositivi di sicurezza, protezione e controllo per generatore a combustibile gassoso
Barriera idraulica	NO	⊘ ⊘	
Potenza al focolare totale	> 35 kW		
Potenza pompa di calore	< 35 kW		
Potenza generatore a gas	> 35 kW		
Barriera idraulica	NO	_	
Potenza al focolare totale	> 35 kW		
3			

Caldaia a combustibile gassoso in combinazione con pompa di calore.

Potenza pompa di calore	> 35 kW
Potenza generatore a gas	< 35 kW
Barriera idraulica	NO
Potenza al focolare totale	> 35 kW

Potenza pompa di calore	< 35 kW
Potenza generatore a gas	< 35 kW
Barriera idraulica	NO
Potenza al focolare totale	> 35 kW

GRAZIE PER L'ATTENZIONE

S.R. 229, n. 25 28010 Fontaneto d'Agogna (NO) Italy Tel. +39 0322 8491 / Fax +39 0322 863305 info@caleffi.com www.caleffi.com

<u>CaleffiVideoProjects</u>

caleffi-s-p-a-

<u>Caleffiltalia</u>

Marco Godi marco.godi@caleffi.com