Collettore di distribuzione per impianti a pannelli

serie 664

Funzione

Il collettore di distribuzione per impianti a pannelli radianti è progettato per ottimizzare la distribuzione del fluido termovettore nei circuiti degli impianti a pavimento, al fine di migliorare il controllo dell'emissione termica dei pannelli.

Questa particolare serie di collettori è composta da:

- collettore di mandata, completo di flussometri e valvole di regolazione incorporate, con indicatori pulibili e sostituibili ad impianto funzionante;
- collettore di ritorno, completo di valvole di intercettazione predisposte per comando elettrotermico;
- gruppi di testa completi di valvola automatica e valvola manuale di sfogo aria con rubinetti di carico/scarico;
- termometri digitali a cristalli liquidi, sui collettori di mandata e ritorno.

Gamma prodotti

Serie 664 Collettore di distribuzione per impianti a pannelli

__ misura 1"

Caratteristiche tecniche

Materiali

Collettore di mandata

Corpo: ottone EN 1982 CB753S

Valvola regolazione portata:

Asta e otturatore: PA
Tenute idrauliche: EPDM
Coperchio di protezione: ABS
Molla: acciaio inox EN 10270-3 (AISI 302)

Collettore di ritorno

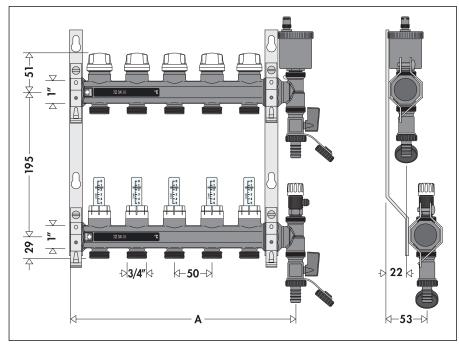
Corpo: ottone EN 1982 CB753S

Valvola di intercettazione:

Vitone: ottone EN 12164 CW614N
Asta otturatore: acciaio inox EN 10088-3 (AISI 303)
Otturatore: EPDM
Molla: acciaio inox EN 10270-3 (AISI 302)
Tenute idrauliche: EPDM
Tappo: ABS

Zanche e supporti: Acciaio EN 10027-1 S235JR

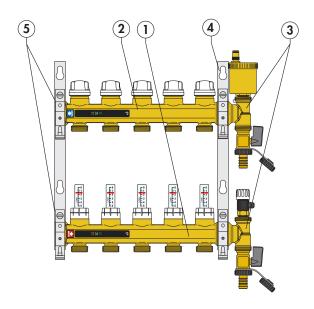
Prestazioni


Fluidi di impiego: acqua, soluzioni glicolate Max percentuale di glicole: 30%

Pressione max di esercizio: 6 bar Campo di temperature di esercizio: 5÷60°C

Scala termometri digitali a cristalli liquidi: 24÷48°C
Scala flussometro: 0÷5 l/min
Precisione: ±10%

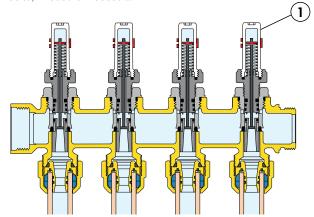
 $\begin{array}{lll} \mbox{Attacchi principali:} & 1" \mbox{ F (ISO 228-1)} \\ \mbox{Derivazioni:} & 3/4" \mbox{ M - } \mbox{\emptyset 18} \\ \mbox{Interasse:} & 50 \mbox{ mm} \end{array}$

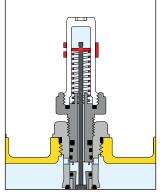

Dimensioni

Codice	N. derivazioni	L totale (A)	Massa (kg)
664 6B1	2	165	2,7
664 6C1	3	215	3,1
664 6D1	4	265	3,6
664 6E1	5	315	4,2
664 6F1	6	365	4,8
664 6G1	7	425	5,2
664 6H1	8	475	5,7
664 611	9	525	6,3
664 6L1	10	575	7,1
664 6M1	11	625	7,6
664 6N1	12	675	8,1
664 6O1	13	735	9

Componenti caratteristici

- 1 Collettore di mandata completo di flussometri e valvole di regolazione portata incorporate
- 2 Collettore di ritorno completo di valvole di intercettazione predisposte per comando elettrotermico
- **3** Gruppi di testa completi di valvole sfogo aria manuale e automatica, raccordo a doppio attacco radiale rubinetti di scarico e tappi
- 4 Coppia di zanche di fissaggio per cassetta di contenimento o per muratura

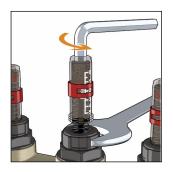

Particolarità costruttive


Collettore di mandata

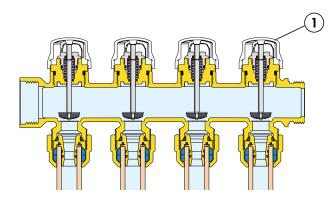
Il collettore di mandata è dotato di flussometri e valvole di regolazione della portata incorporati (1).

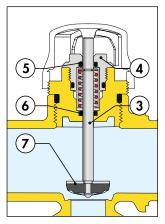
Mediante la valvola di regolazione, la portata ai singoli circuiti può essere regolata con precisione al valore desiderato, valore letto direttamente sul singolo flussometro con scala 0÷5 l/min. In questo modo si semplifica e velocizza l'operazione di taratura del circuito, senza la necessità di grafici di riferimento. Dopo la regolazione, la valvola può essere bloccata alla posizione di apertura, mediante il coperchio protettivo di cui è dotata.

La stessa valvola permette di effettuare l'intercettazione del singolo circuito, in caso di necessità.



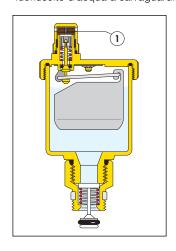
Pulizia o ricambio flussometri a circuito funzionante


Gli indicatori dei flussometri, di cui è fornito il collettore di mandata, sono facilmente smontabili senza dover svuotare l'impianto, per essere puliti o sostituiti (ricambio cod. R69913). L'indicatore di posizione taratura consente di ri-bilanciare correttamente il circuito sulla portata di progetto dopo l'operazione di manutenzione.



Collettore di ritorno

Il collettore di ritorno è provvisto di valvole di intercettazione manuali (1), mediante le quali può essere esclusa la portata ai singoli circuiti. Esse sono inoltre predisposte per l'applicazione di un comando elettrotermico (2) che, utilizzato con un termostato ambiente, permette di mantenere la temperatura ambiente ai valori impostati al variare del carico termico. L'asta dell'otturatore (3) è in acciaio inossidabile rettificato al fine di minimizzare gli attriti ed impedire pericolose incrostazioni. Il vitone (4) ha una doppia tenuta ad O-Ring in EPDM (5) – (6) sull'asta di scorrimento. L'otturatore (7) in EPDM è sagomato in modo tale da ottimizzare le caratteristiche idrauliche della valvola e ridurre al minimo la rumorosità data dal passaggio del fluido, anche durante l'azione progressiva di apertura o chiusura nel funzionamento con comando elettrotermico.



Gruppo di testa collettore di ritorno

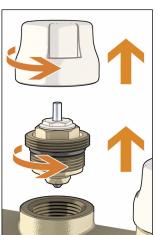
La valvola automatica di sfogo aria svolge la funzione di espellere automaticamente l'aria che si accumula all'interno dei circuiti dell'impianto di climatizzazione.

Essa è dotata di tappo igroscopico di sicurezza (1) che impedisce fuoriuscite d'acqua a salvaguardia dell'installazione.

Termometri digitali

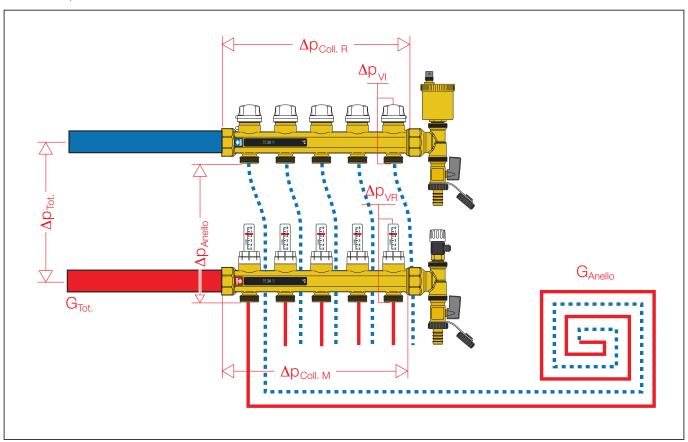
Su entrambi i lati del corpo collettore di mandata e di ritorno è applicato un termometro digitale a cristalli liquidi, con campo temperatura 24÷48°C. I cristalli liquidi si illuminano automaticamente di colore verde in corrispondenza del valore di temperatura misurata, permettendo una facile lettura anche in condizioni di scarsa illuminazione.

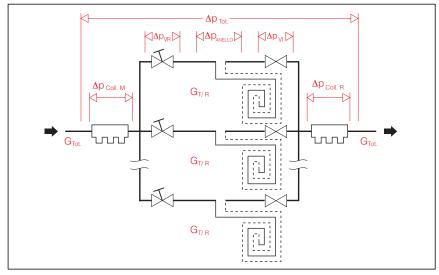
Tale termometro è tarato per permettere la visualizzazione dell'effettiva temperatura del fluido, indispensabile per valutare le condizioni di funzionamento e di carico termico dell'impianto.



Componenti sostituibili

I gruppi vitone della valvola di regolazione con flussimetro e della valvola intercettazione sono smontabili e sostituibili con appositi ricambi.





Caratteristiche idrauliche

Per la determinazione delle caratteristiche idrauliche del circuito occorre effettuare il calcolo della perdita di carico complessiva che la portata di fluido subisce al passaggio attraverso l'insieme dei dispositivi che compongono il gruppo collettore ed i circuiti dei pannelli radianti.

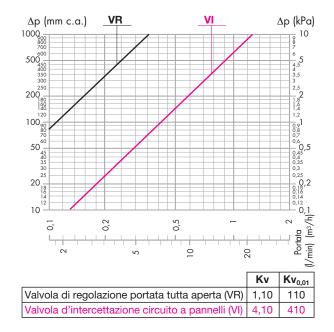
Dal punto di vista idraulico, il sistema costituito da gruppo collettore e circuiti è schematizzabile come un insieme di elementi idraulici disposti in serie ed in parallelo.

Δρτοι. = Perdita totale ai capi del collettore (Mandata + Ritorno + Anello)

Δρν_R = Perdita localizzata valvola di regolazione anello (portata anello)

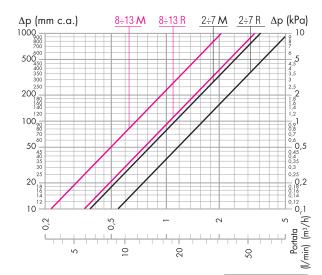
Δp_{Anello} = Perdita dell'anello (portata anello)

Δρνι = Perdita localizzata valvola intercettazione circuito pannello (portata anello)


Δpcoll. M = Perdita distribuita del collettore di mandata (portata totale)

Δpcoll. R = Perdita distribuita del collettore di ritorno (portata totale)

$$\Delta p_{\text{Tot.}} = \Delta p_{\text{VR}} + \Delta p_{\text{Anello}} + \Delta p_{\text{VI}} + \Delta p_{\text{CoII. M}} + \Delta p_{\text{CoII. R}}$$
 (1.1)


Note le caratteristiche idrauliche di ogni singolo componente e le portate di progetto, la perdita totale può essere calcolata come somma di perdite di carico parziali relative ad ogni specifico componente del sistema, come indicato nella relazione (1.1).

Caratteristiche idrauliche

⁻ Kv_{0,01} = portata in I/h per una perdita di carico di 1 kPa

	Kv	Kv _{0,01}
Collettore di mandata 2÷7 partenze	11,10*	1110*
Collettore di ritorno 2÷7 partenze	16,70*	1670*
Collettore di mandata 8÷13 partenze	6,90*	690*
Collettore di ritorno 8÷13 partenze	10,40*	1040*

^{*} Valore medio

Esempio di calcolo della perdita di carico totale

Supponiamo di dover calcolare la perdita di carico di un collettore a tre partenze con le seguenti caratteristiche:

Portata totale collettore: 450 l/h

Le caratteristiche di portata e perdita di carico delle tubazioni dei tre anelli sono le seguenti:

Circuito 1 Circuito 2 Circuito 3 $\Delta p_1 = 10 \text{ kPa} \qquad \Delta p_2 = 10 \text{ kPa} \qquad \Delta p_3 = 7 \text{ kPa} \qquad (1.2)$ $G_1 = 120 \text{ l/h} \qquad G_2 = 150 \text{ l/h} \qquad G_3 = 80 \text{ l/h}$

Calcoliamo ciascun termine della formula (1.1), utilizzando la relazione:

$$\Delta p = G^2/Kv_{0.01}^2$$

- · G = portata in I/h
- \cdot Δp = perdita di carico in kPa (1 kPa =100 mm c.a.)
- \cdot Kv_{0,01} = portata in I/h attraverso il dispositivo considerato, a cui corrisponde una perdita di carico di 1 kPa

E' da sottolineare che il calcolo della Δpτot. deve essere effettuato tenendo conto del circuito in cui si hanno le maggiori perdite di carico distribuite, lungo l'intero anello della tubazione del pannello.

Nel caso preso in esame il circuito in questione è il N° 2.

Segue che:

Tramite la (1.1) sommando tutti i termini calcolati, otteniamo:

$$\Delta p_{\text{Tot}} = 1,86 + 15 + 0,13 + 0,1 + 0,04 \approx 17 \text{ kPa}$$

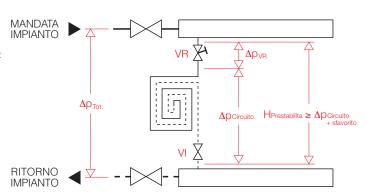
Nota:

Dati i bassi valori di perdite di carico relative ai collettori, i due termini ad essi relativi si possono trascurare. In generale, la perdita di carico totale è ragionevolmente approssimabile a quella del circuito derivato del pannello.

Utilizzo delle valvole di regolazione con flussometro

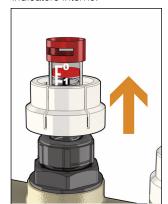
Le valvole di regolazione inserite nel collettore di mandata consentono di bilanciare i singoli circuiti dei pannelli per ottenere in ognuno di essi le effettive portate che vengono determinate in sede di progetto.

Considerando i seguenti dati:

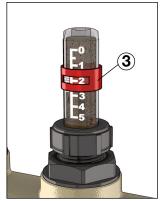

- portata di fluido che deve attraversare ogni circuito
- perdita di carico che per tale portata si genera in ciascun circuito:

$$\Delta p_{Circuito} = \Delta p_{Anello} + \Delta p_{VI} (\Delta p_{Valvola intercettazione})$$

 prevalenza disponibile sul circuito pannello o prevalenza prestabilita:


$$H_{Prestabilita} \ge \Delta p_{Circuito} + = \Delta p_{VR} + \Delta p_{Anello} + \Delta p_{VI}$$

con riferimento allo schema a lato, la valvola di regolazione deve, a fronte della portata dell'anello, fornire una perdita di carico supplementare pari alla differenza Δp_{VR} ($\Delta p_{Valvola regolazione}$).



Regolazione e lettura diretta della portata

Estrarre manualmente il coperchio protettivo rosso dal flussometro. Ad impianto funzionante, regolare la portata di progetto agendo manualmente sulla ghiera di regolazione (1). Il valore della portata viene indicato dal movimento verticale del disco indicatore rosso (2). Quando il disco indicatore rosso si posiziona sul valore di portata desiderata, riportare l'indicatore esterno (3) in corrispondenza del disco indicatore interno.

TESTO DI CAPITOLATO

Serie 664

Collettore di distribuzione per impianti a pannelli radianti a 2 (da 2 a 13) derivazioni. Corpo in ottone. Tenute in EPDM. Attacchi principali di testa 1" F (ISO 228-1). Attacchi derivazioni 3/4" M - Ø 18 filettati, interasse 50 mm. Fluidi d'impiego acqua e soluzioni glicolate. Massima percentuale di glicole 30%. Pressione massima di esercizio 6 bar. Campo di temperatura di esercizio 5÷60°C.

Composto da:

- Collettore di mandata completo di valvole regolazione portata e flussometro con scala graduata 0÷5 l/min. Precisione ±10%.
- Collettore di ritorno completo di valvole di intercettazione predisposte per comando elettrotermico.
- Coppia gruppi di testa completi di valvola automatica di sfogo aria con tappino igroscopico su collettore di ritorno e valvola di sfogo aria manuale e tappo su collettore di mandata. Complete di rubinetto di carico/scarico.
- Coppia di zanche di fissaggio per cassetta di contenimento o per muratura .

ACCESSORI

Coibentazione per collettori serie 664. Per riscaldamento e raffrescamento. Utilizzare cassetta codice 659..4 (profondità 110÷140 mm).

Codice

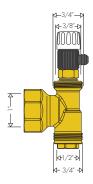
CBN6646F1	per collettori da 2 a 6 attacchi
CBN6646N1	per collettori da 7 a 12 attacchi
CBN6646O1	per collettori da 13 attacchi

Kit di by-pass

662010

Kit eccentrico di by-pass a taratura fissa 25 kPa (2500 mm c.a.). Pmax d'esercizio: 10 bar. Campo di temperatura: -10÷110°C.

Gruppo di testa


599662

Gruppo di testa composto da rubinetto di sfogo aria, raccordo a doppio attacco radiale e tappo.
Pmax d'esercizio: 10 bar.
Campo di temperatura:

5÷100°C. Attacco principale: 1" F. Attacco inferiore: 3/4" M. Attacco sfogo aria superiore: 3/8" F.

Attacco tappo inferiore: 1/2" F.

Valvole di sfogo aria

502033

Valvola automatica di sfogo aria. In ottone stampato. Con tappo igroscopico di sicurezza. Pmax d'esercizio: 10 bar. Pmax di scarico: 2,5 bar. Tmax d'esercizio: 120°C. Attacco 3/8" M

R59681 AQUASTOP®

Tappo igroscopico di sicurezza. Per valvole di sfogo aria serie 5020 e 5021.

337231

Mini rubinetto di scarico con tenuta metallica.

Scarico orientabile.

Filetto a tenuta PTFE. Pmax d'esercizio: 10 bar. Tmax d'esercizio: 100°C. Attacco 3/8" M.

Rubinetto di scarico

538400

Rubinetto di scarico con portagomma e tappo. Pmax d'esercizio: 10 bar. Tmax d'esercizio: 110°C. Attacco 1/2" M.

R69913

Ricambio vetrino con scala graduata per flussometro.

Valvole di intercettazzione

391066

Coppia valvole di intercettazione a sfera attacchi femmina-maschio con bocchettone con tenuta O-Ring. Pmax d'esercizio: 10 bar. Campo di temperatura: 5÷100°C. Attacco 1".

Zanche di fissaggio

658101

Coppia zanche di fissaggio in acciaio per collettori serie 662 e 664.
Per l'impiego con cassette serie 659..5 o direttamente a muro.

Raccordi

680 DARCAL

Raccordo a diametro autoadattabile per tubi in materiale plastico, semplice e multistrato. Pmax d'esercizio: 10 bar. Campo temperatura: 5÷80°C (PE-X), 5÷75°C (Multistrato marcato 95°C).

Codice		Ø _{interno}	Øes	sterno
680 507	3/4"	7,5÷ 8	10,5	5÷12
680 502	3/4"	7,5÷ 8	12	÷14
680 503	3/4"	8,5÷ 9	12	÷14
680 500	3/4"	9 ÷ 9,5	14	÷16
680 501	3/4"	9,5÷10	12	÷14
680 506	3/4"	9,5÷10	14	÷16
680 515	3/4"	10,5÷11	14	÷16
680 517	3/4"	10,5÷11	16	÷18
680 524	3/4"	11,5÷12	14	÷16
680 526	3/4"	11,5÷12	16	÷18
680 535	3/4"	12,5÷13	16	÷18
680 537	3/4"	12,5÷13	18	÷20
680 544	3/4"	13,5÷14	16	÷18
680 546	3/4"	13,5÷14	18	÷20
680 555	3/4"	14,5÷15	18	÷20
680 556	3/4"	15 ÷15,5	18	÷20
680 564	3/4"	15,5÷16	18	÷20
680 505	3/4"	17	2	2,5

⊟ ♦ 0 €

Codice

347

Raccordo meccanico per tubi in rame ricotto, rame crudo, ottone, acciaio dolce e acciaio inox. A tenuta O-Ring.

Pmax d'esercizio: 10 bar. Campo temperatura: -25÷120°C.

		·
347 510	3/4" - Ø 10	
347 512	3/4" - Ø 12	
347 514	3/4" - Ø 14	
347 515	3/4" - Ø 15	
347 516	3/4" - Ø 16	
347 518	3/4" - Ø 18	

386500

Disco a tappo con calotta, per derivazioni dei collettori. Attacco 3/4".

Comandi elettrotermici

6561

G depl. 01042

Comando elettrotermico per collettori serie 662 e 664. Normalmente chiuso.

Codice	Tensione (V)	
6561 02	230	
6561 04	24	
6561 12	230	Con microinterruttore ausiliario
6561 14	24	Con microinterruttore ausiliario

Caratteristiche tecniche

Materiali

Guscio protettivo: policarbonato autoestinguente (cod. 656102/04) bianco RAL 9010 Colore: (cod. 656112/14) grigio RAL 9002

Prestazioni

Normalmente chiuso

Alimentazione: 230 V (ac) - 24 V (ac) - 24 V (dc)

Corrente di spunto: ≤ 1 A

Corrente a regime: 230 V (ac) = 13 mA24 V (ac) - 24 V (dc) = 140 mA

Potenza assorbita a regime:

Portata contatti micro ausiliario (cod. 656112/114): 0,8 A (230 V)

IP 44 (in posizione verticale) Grado di protezione:

Costruzione con doppio isolamento: CF 🖂

Temperatura ambiente max: 50°C

Tempo di intervento: apertura e chiusura da 120 s a 180 s

Lunghezza cavo d'alimentazione: 80 cm

Comandi elettrotermici con manopola di apertura manuale ed indicatore di posizione

6563

G depl. 01142

Comando elettrotermico per collettori serie 662 e 664. Normalmente chiuso. PATENT.

Codice	Tensione (V)	
6563 02	230	
6563 04	24	
6563 12	230	Con microinterruttore ausiliario
6563 14	24	Con microinterruttore ausiliario

Caratteristiche tecniche

Materiali

Guscio protettivo: policarbonato autoestinguente (cod. 656302/04) bianco RAL 9010 Colore: (cod. 656312/14) grigio RAL 9002

Prestazioni

Normalmente chiuso

Alimentazione: 230 V (ac) - 24 V (ac) - 24 V (dc) Corrente di spunto: ≤ 1 A

Corrente a regime: 230 V (ac) = 13 mA

24 V (ac) - 24 V (dc) = 140 mA

Potenza assorbita a regime: 3 W Portata contatti micro ausiliario (cod. 656312/14): 0,8 A (230 V)

IP 40 Grado di protezione: Costruzione con doppio isolamento: CE 🖂

Temperatura ambiente max: 50°C Tempo di intervento: apertura e chiusura da 120 s a 180 s

Lunghezza cavo d'alimentazione:

Comandi elettrotermici, installazione ad aggancio rapido con adattatore a clip

6562/4

G depl. 01198

Comando elettrotermico per collettori serie 662 e 664. Normalmente chiuso.

Codice	Tensione (V)	
6562 02	230	
6562 04	24	
6562 12	230	Con microinterruttore ausiliario
6562 14	24	Con microinterruttore ausiliario

Versione a basso assorbimento

Codice	Tensione (V)	
6564 02	230	
6564 04	24	
6564 12	230	Con microinterruttore ausiliario
6564 14	24	Con microinterruttore ausiliario

Caratteristiche tecniche

Materiali

Guscio protettivo: policarbonato autoestinguente (cod. 656.02/04) bianco RAL 9010 Colore: (cod. 656.12/14) grigio RAL 9002

Prestazioni

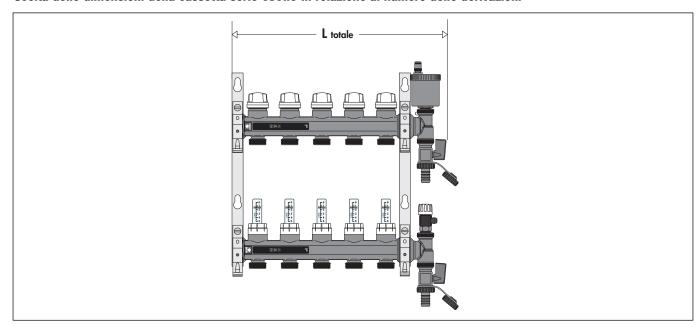
Normalmente chiuso Alimentazione:

230 V (ac) - 24 V (ac) - 24 V (dc) $(6562) \le 1 \text{ A}, (6564) \le 250 \text{ mA} (230 \text{ V})$ Corrente di spunto:

Corrente a regime:

-serie 6562: 230 V (ac) = 13 mA; 24 V (ac) - 24 V (dc) = 140 mA -serie 6564: 230 V (ac) = 15 mA; 24 V (ac) - 24 V (dc) = 125 mA Potenza assorbita a regime: Portata contatti micro ausiliario (cod. 656.12/14): 0.8 A (230 V)

Grado di protezione (assemblato in tutte le posizioni): IP 54 Costruzione con doppio isolamento: CE 🗆


Tempo di intervento serie 6562

Tempo di intervento: apertura e chiusura da 120 s a 180 s Tempo di chiusura micro ausiliario: da 120 s a 180 s

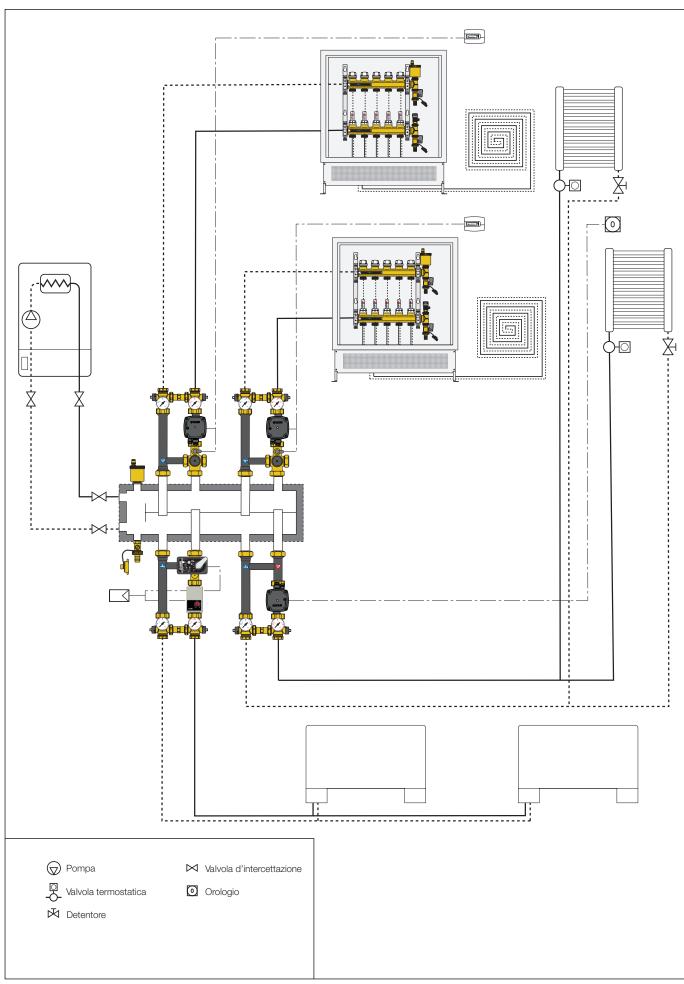
Tempo di intervento serie 6564

Tempo di apertura: (80%): 300 s; (100%): 600 s Tempo di chiusura: 240 s Tempo di chiusura micro ausiliario: 300 s Lunghezza cavo d'alimentazione: 80 cm

Scelta delle dimensioni della cassetta serie 659..5 in relazione al numero delle derivazioni

Codice	664 6B1	664 6C1	664 6D1	664 6E1	664 6F1	664 6G1	664 6H1	664 611	664 6L1	664 6M1	662 6N1	664 6O1
No. derivazioni	2	3	4	5	6	7	8	9	10	11	12	13
Lungh. tot. collettore (mm)	180	230	280	330	380	440	490	540	590	640	690	750
Lungh. cassetta (mm)	400	400	400	600	600	600	600	800	800	800	800	1000
Codice cassetta serie 659	659 045	659 045	659 045	659 065	659 065	659 065	659 065	659 085	659 085	659 085	659 085	659 105

Cassette di contenimento


659 **G** depl. 01180

Cassetta per collettori serie 349, 350, 592, 662 e 671.
Completa di specifico supporto per zanche collettori.
Chiusura con blocchetto ad aggancio rapido. In lamiera verniciata.

Profondità regolabile da 80 a 120 mm.

Codice	Dim. utili ($h \times b \times p$)	
659 045	500 x 400 x 80÷120	
659 065	500 x 600 x 80÷120	
659 085	500 x 800 x 80÷120	
659 105	500 x 1000 x 80÷120	

Schemi applicativi

