Anti-condensation valve

Function

The anti-condensation valve, used in heating systems with a solid fuel generator, automatically regulates at the setting value the temperature of the water returning to the generator. Keeping the generator at a high temperature prevents condensation of the water vapour contained in the flue gas. It can be used both on boilers and residential generators such as fireplace heating systems, thermostoves and thermocookers. The anti-condensation valve extends the life of the generator and ensures greater efficiency.

Product range

280 series

280 series Anti-condensation valve

sizes DN 20 (3/4", 1"), DN 25 (1"), DN 32 (1 1/4")

Technical specifications

Materials

- DN 20: Body: - DN 25, DN 32: Cap: Obturator: Spring: Seal: Union seals: Wax thermostatic sensor

Performance

Medium:	water, glycol solutions
Maximum percentage of glycol:	50 %
Maximum working pressure:	10 bar
Working temperature range:	5–100 °C
Setting temperature (Tset):	45 °C, 55 °C, 60 °C, 70 °C
Setting accuracy:	±2 °C
By-pass complete closing temperature:	Tmix=Tset+10 °C=Tr

Connections:

3/4" - 1" - 1 1/4" M (EN 10226) with union

brass EN 12165 CW617N

brass EN 12164 CW614N


brass EN 1982 CB753S

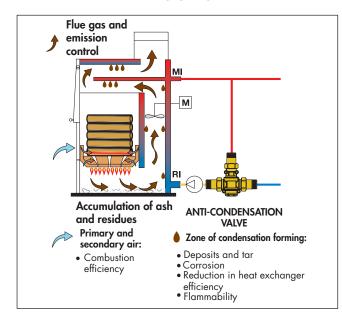
PSU

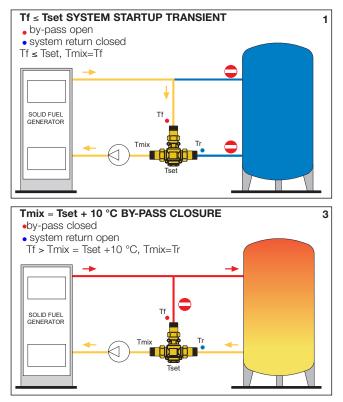
stainless steel EPDM

non-asbestos fibre

Dimensions

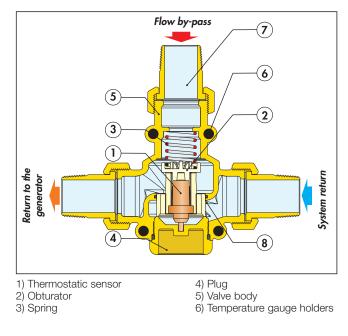
Code	DN	Α	В	С	D	E	F	Mass (kg)
280 05.	20	3 /4"	67,5	135	105,5	29	76,5	0,750
280 26.	20]″	67,5	135	105,5	29	76,5	0,830
280 06.	25]″	88,5	177	153,5	42	111,5	1,650
280 07.	32	1 1/4"	97	194	157	40	117	2,050

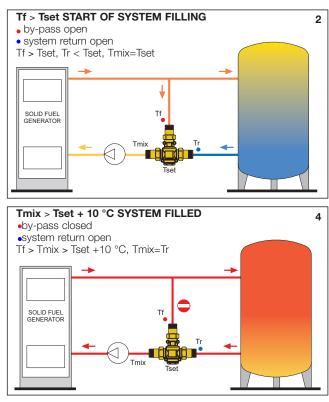

Code completion


•	4	5	6	7		
Setting	45 °C	55 °C	60 °C	70 °C		
e e e e e e e e e e e e e e e e e e e						

Wooden biomass and condensation build-up

Wooden solid fuel contains a variable moisture percentage depending on the type (logs, pellets, woodchips etc.) and seasoning. Water vapour is released during the solid fuel drying phase inside the combustion chamber. The presence of cold zones in the generator or flue pipe can lower the temperature of the flue gas down to the dew point, causing condensation to occur. Water vapour condenses on the generator surfaces, together with soot and part of the unburned hydrocarbons contained in the flue gas, producing deposits and tar. These substances stick to the walls of the generator, covering most of the inner surfaces. In addition to being dangerous due to its flammability, tar is damaging to the integrity of the generator and limits the efficiency of the flue gas-system water heat exchanger.


By keeping the generator walls at the highest possible temperature, the anti-condensation valve limits the formation of these substances, thereby increasing the combustion efficiency, controlling the emissions into the environment and prolonging the generator life.


Tf = Flow temperature Tset = Anti-condensation setting temperature

Characteristic components

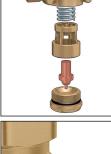
Operating principle

The thermostatic sensor (1), completely immersed in the medium, controls the movement of an obturator (2) that regulates the flows in by-pass (7) and towards the system. On starting up the heat generator, the anti-condensation valve recirculates the flow water so as to bring the generator up to temperature as quickly as possible (**fig.** 1). When the flow temperature Tf exceeds the setting value of the anti-condensation valve Tset, the cold port (8) of the valve starts to open in order to carry out mixing Tmix: in this phase system filling begins (**fig. 2**). When the return temperature to the generator Tmix is greater than the setting value of the anti-condensation valve by approximately 10 °C, the by-pass port (7) closes and water returns to the generator at the same temperature as the system return (**fig. 3** and **fig. 4**).

Tmix = Mixed water return temperature to generator Tr = System return temperature

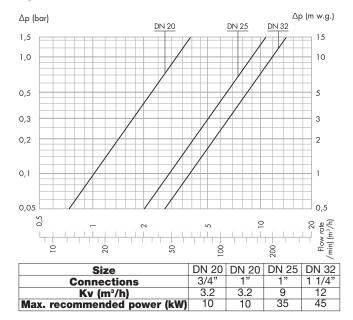
Construction details

Brass body


The brass body prevents the formation of ferrous residues in the system, thereby helping to prolong the life of the heat generator.

Thermostatic sensor replacement for setting modification

The thermostatic sensor can easily be removed for maintenance or setting change.


Temperature gauge holders

The body of the anti-condensation valve in sizes DN 25 and DN 32 features temperature gauge holders on the front and rear sides. The holders allow the housing of code F29571 temperature gauges for controlling the working temperatures of the valve: by-pass water from the flow line, water returning from the system and mixed water returning to the generator.

Hydraulic characteristics

Application diagram

Solid fuel generator, direct supply to the system.

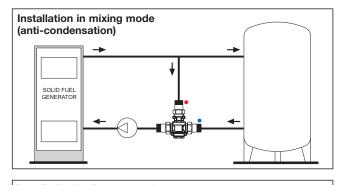
valve. The sum of pressure drops at the valve and those for the rest of the system should be compatible with the available head for the generator pump. The setting (°C) must be selected so as to guarantee

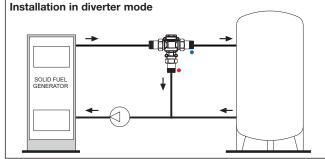
generator pump. The setting (°C) must be selected so as to guarantee a return temperature to the generator that is high enough to prevent condensation, also using the information or instructions supplied by manufacturers of solid fuel generators.

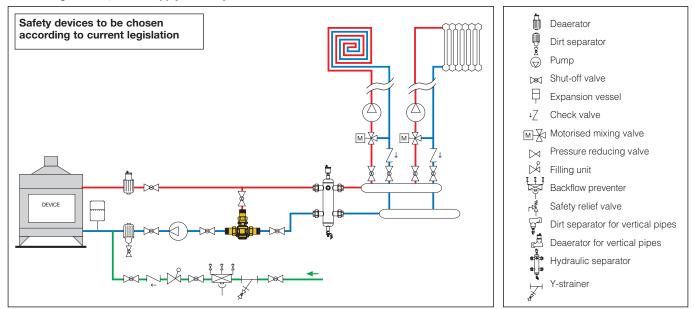
The valve should be chosen based on the Kv value (to which the DN

size of the body corresponds) and not based only on the threaded connections. According to the power output and temperature

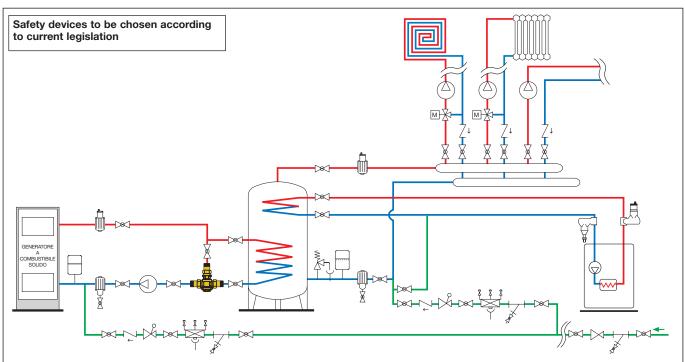
difference on the heat generator, the flow rate provided by the

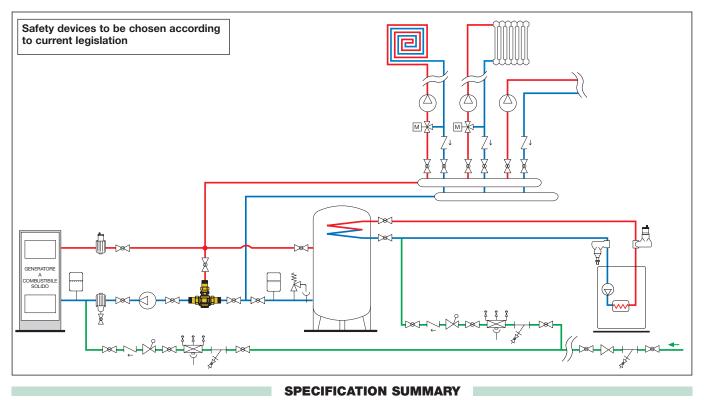

generator can be calculated. With this value, it's possible to use the


hydraulic characteristics diagram to obtain the pressure drop of the


Sizing method / Setting selection

Installation


The valve can be fitted on both sides of the generator in any position, vertical or horizontal. **Installation is recommended on the return to the generator in mixing mode**; it is also permitted on the flow from the generator in diverter mode.



System with inertial storage

Solid fuel generator, connection to inertial water storage in parallel.

280 series

Anti-condensation valve. Size DN 20 (from DN 20 to DN 32). Connections 3/4" (from 3/4" to 1 1/4") M (EN10226) with union. Brass body. Brass cap. PSU obturator. Stainless steel spring. EPDM seal. Wax thermostatic sensor. Medium water and glycol

solutions. Max. percentage of glycol 50 %. Maximum working pressure 10 bar. Working temperature range 5-100 °C. Setting temperatures 45 °C, 55 °C, 60 °C, 70 °C. Setting accuracy ±2 °C. By-pass complete closing temperature setting +10 °C.

We reserve the right to make changes and improvements to our products and the related technical data in this publication, at any time and without prior notice. The website www.caleffi.com always has the most up-to-date version of the document, which should be used for technical verifications.

Caleffi S.p.A. S.R. 229 n. 25 · 28010 Fontaneto d'Agogna (NO) · Italy Tel. +39 0322 8491 · Fax +39 0322 863723 info@caleffi.com · www.caleffi.com © Copyright 2024 Caleffi