Balancing valves

130 series

Function

Balancing valves are hydraulic devices used for accurately regulating the flow rate of the thermal medium supplying the terminal emitters of a system. Correct balancing of the hydraulic circuits is essential to guarantee system operation according to design specifications, high thermal comfort and low energy consumption.

On 130 series threaded valves, the flow rate is measured with a Venturi device, housed inside the valve body. This device ensures balancing accuracy and is extremely practical to use during setting.

Product range

130 series Balancing valve with Venturi device. Threaded version sizes DN 15 (1/2"), DN 20 (3/4"), DN 25 (1"), DN 32 (1 1/4"), DN 40 (1 1/2"), DN 50 (2")
130 series Balancing valve. Flanged version sizes DN 65, DN 80, DN 100, DN 125, DN 150, DN 200, DN 250, DN 300
Code CBN130.00 Shell insulation for threaded balancing valves with Venturi device

Technical specifications

<table>
<thead>
<tr>
<th>series</th>
<th>130 threaded</th>
<th>130 flanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>dezincification resistant alloy EN 12165 CW602N</td>
<td>grey cast iron EN-GJL-250</td>
</tr>
<tr>
<td>Body:</td>
<td>dezincification resistant alloy EN 12165 CW511L</td>
<td>grey cast iron EN-GJL-250</td>
</tr>
<tr>
<td>Cover:</td>
<td>dezincification resistant alloy EN 12164 CW724R</td>
<td>brass EN 12164 CW614N</td>
</tr>
<tr>
<td>Control stem:</td>
<td>dezincification resistant alloy EN 12165 CW602N</td>
<td>PPS</td>
</tr>
<tr>
<td>Obturator:</td>
<td>EPDM</td>
<td>grey cast iron EN-GJL-250</td>
</tr>
<tr>
<td>Seal seat:</td>
<td>EPDM</td>
<td>EPDM</td>
</tr>
<tr>
<td>Hydraulic seals:</td>
<td>PTFE</td>
<td>EPDM</td>
</tr>
<tr>
<td>Obturator seal:</td>
<td>PAG630</td>
<td>EPDM</td>
</tr>
<tr>
<td>Knob:</td>
<td>brass body with EPDM seal elements</td>
<td>EPDM</td>
</tr>
<tr>
<td>Pressure test ports:</td>
<td>brass body with EPDM seal elements</td>
<td>brass body with EPDM seal elements</td>
</tr>
</tbody>
</table>

Performance

Medium:	water and non-hazardous glycol solutions excluded from the guidelines of directive 67/548/EC 50%	water and non-hazardous glycol solutions excluded from the guidelines of directive 67/548/EC 50%
Maximum percentage of glycol:	16 bar	16 bar
Maximum working pressure:	-20 to +120°C	-10 to 140°C
Working temperature range:	±10%	-10 to 120°C (DN 200 - DN 250 - DN 300) ±10%
Accuracy:	6	DN 65, DN 80 and DN 100: 7; DN 125: 12; DN 150: 15; DN 200, DN 250 and DN 300: 11
Number of adjustment turns:		

Connections

| - main: | 1/2" - 2" F (ISO 228-1) | DN 65, 80, 100, 125, 150, 200, 250, 300; PN 16 - EN 1092-2 1/4" F (ISO 228-1) |
| - valve body pressure test ports: | 1/4" F (ISO 228-1) | 1/4" F (ISO 228-1) |
Technical specifications of insulation

Material
- Material: closed cell expanded PE-X
- Thickness: 15 mm
- Density: - inner part: 30 kg/m³
 - outer part: 80 kg/m³
- Thermal conductivity (ISO 2581): - at 0°C: 0.038 W/(m·K)
 - at 40°C: 0.045 W/(m·K)
- Coefficient of resistance to the diffusion of water vapour (DIN 52615): >1300
- Working temperature range: 0–100°C
- Reaction to fire (DIN 4102): class B2

Advantages of balanced circuits

Balanced circuits have the following principal benefits:
1. The terminals of the system operate correctly in heating, cooling and dehumidification without wastage and provide better comfort.
2. The pumps run in their zone of highest efficiency, thus reducing the risk of overheating and excessive wear.
3. Too high medium speeds, which can result in noise and abrasion, are avoided.
4. The differential pressures acting on the regulation valves are limited in value, thus preventing faulty operation.

Dimensions

<table>
<thead>
<tr>
<th>Code</th>
<th>DN</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130400</td>
<td>15</td>
<td>1/2"</td>
<td>77</td>
<td>104</td>
<td>0.57</td>
</tr>
<tr>
<td>130500</td>
<td>20</td>
<td>3/4"</td>
<td>82</td>
<td>104</td>
<td>0.61</td>
</tr>
<tr>
<td>130600</td>
<td>25</td>
<td>1"</td>
<td>97</td>
<td>107</td>
<td>0.75</td>
</tr>
<tr>
<td>130700</td>
<td>32</td>
<td>1 1/4"</td>
<td>115</td>
<td>114</td>
<td>1.05</td>
</tr>
<tr>
<td>130800</td>
<td>40</td>
<td>1 1/2"</td>
<td>129</td>
<td>120</td>
<td>1.27</td>
</tr>
<tr>
<td>130900</td>
<td>50</td>
<td>2"</td>
<td>152</td>
<td>132</td>
<td>1.85</td>
</tr>
</tbody>
</table>

Operating principle

The balancing valve is an hydraulic device that allows to regulate the medium flow rate passing through.

Regulation is performed using a knob that governs the movement of an obturator, to regulate the flow of the medium. The flow rate is controlled according to the value of Δp that is measured with two piezometric connections suitably positioned on the valve.
130 series threaded connections

Construction details

Venturi device for flow rate measurement
The 130 series valves of size from 1/2” to 2” are equipped with a flow rate measuring device based on the Venturi principle. It is housed in the valve body and is located upstream of the valve’s obturator, as shown in the figure below.

This system provides the following benefits:

1. Provides stable measurement during flow rate regulation. Balancing valves normally have their pressure test ports upstream and downstream of the valve obturator. This means that when the valve is closed to less than 50% of its full opening, the turbulence created downstream of the obturator causes instability in the pressure signal, causing significant measurement errors.

2. It is allowed to install the valves without keeping excessively long straight sections of pipe downstream.

3. The Venturi system makes for a faster process of measurement and manual circuit balancing. The flow rate is now only a function of the Δp measured upstream and downstream of the fixed orifice of the Venturi meter, upstream of the obturator, and no longer through the entire valve. In practical terms, the only data required for measuring the flow rate in the valves is now Δp and no longer Δp and the position of the knob.

4. It makes the flow rate pass through the valve quieter. This is no small advantage when we consider the fact that the threaded balancing valve is frequently used in terminals such as fan coil units, installed directly in dwellings.

Quick-fit pressure test ports
The valves are equipped with quick-fit pressure test ports. Measurement is fast and precise with this type of port, using Caleffi 100 series syringe fittings. When removing the measuring syringe, the port closes automatically, preventing water leakage.

Corrosion-proof materials
130 series balancing valves are made using dezincification resistant alloy, a material that is highly resistant to corrosion and ensures the best performance over time.

Stainless steel obturator
The valve obturator (1) is made of stainless steel. This material offers high resistance to corrosion and deterioration due to friction caused by the continuous flow of water.

Double internal O-Ring
The double O-Ring hydraulic seal (2) prevents the water from coming into contact with the screw thread (3). This mechanism allows the stem (4) to slide linearly in order to accurately adjust the setting of the obturator (1). Keeping the sliding between the valve stem and body hydraulically insulated keeps the flow rate regulation action and the operation of the knob intact over time.

Insulation
For the threaded balancing valve there is also, available as an accessory, hot pre-formed shell insulation, with Velcro closing. It ensures perfect thermal insulation and tightness against water vapour getting inside from the ambient when using chilled water.
Adjustment knob
The shape of the adjustment knob is the outcome of research into ergonomics to ensure the greatest operator comfort and accurate adjustment.
- The range of adjustment with 5 complete turns permits great accuracy when balancing hydraulic circuits.
- The micrometric scale graduations are large and clear and make it easy to refine the flow rate adjustment.
- The knob is made of high-strength, corrosion-proof, reinforced polymer.

Reference scale for adjustment
Each 360° clockwise turn of the knob moves the red indicator by one step, from position 0 (valve closed) to position 6 (valve fully open). In addition, the decimal graduations of the black micrometric scale enable further refining of the adjustment.

Memory stop/Sealing locking
The valves are equipped with an adjustment position memory system that, after full closure which can be necessary for various reasons, allows easy re-opening at the initial position.
Insert a 2.5 mm hexagonal spanner in the hole, turn counterclockwise until the red indicator, initially not visible, is aligned with the top edge of the knob, without forcing it.

There are two holes on the knob that can be used to seal (5) the setting position to avoid or detect any tampering over time.

USING AND SETTING THE BALANCING VALVE
The balancing valve is used considering the fluid dynamic characteristics produced by the relationship between the head loss, flow rate and adjustment position of the obturator control knob.

Pre-adjustment
Knowing the value of the head loss \(\Delta p \) that needs to be created by the valve with a certain flow rate \(G \), you can obtain the adjustment position number for the knob (PRESETTING). To make this choice you can use the characteristic diagram for each valve size. Or, analytically, you can calculate the corresponding \(k_v \) by applying the formula:

\[
k_v = \frac{G}{\sqrt{\Delta p}} \quad (1.1)
\]

where: \(G \) = flow rate in m\(^3\)/h
\(\Delta p \) = head loss in bar (1 bar = 100 kPa, 10,000 mm w.g.)
\(k_v \) = flow rate in m\(^3\)/h through the valve, which corresponds to a head loss of 1 bar

and you compare the value obtained with the typical values for each valve size.
It is recommended to choose the valve size so it is pre-set on a medium opening position in order to have room for both opening and closing.

Flow rate measurement
Connect a differential pressure measuring station to the valve’s Venturi device pressure test ports. Reading \(\Delta p \) on the measuring device, to obtain the flow rate \(G \) you can refer to the characteristic Venturi diagram of the valve being used.
Or, analytically, you can calculate the flow rate by applying the equation:

\[
G = k_v \text{Venturi} \times \sqrt{\Delta p \text{Venturi}} \quad (1.2)
\]

Note: The diagram used in this phase is not the one used for pre-adjustment as it refers to the characteristics of \(\Delta p \text{Venturi} \)-Flow rate of the Venturi device located upstream of the valve and not those of the entire valve (including the obturator), which instead are indicated in the diagrams used for pre-adjustment.

Manual flow rate adjustment
To manually set the flow rate through the valve, adjust the position of the knob until the differential pressure, indicated by the measurement device, corresponds to the desired flow rate on the characteristic Venturi diagram of the valve that you are using.
Or analytically calculate the head loss of the Venturi device by applying the equation:

\[
\Delta p \text{Venturi} = \frac{G^2}{k_v \text{Venturi}} \quad (1.3)
\]

Then turn the adjustment knob until you reach the value of \(\Delta p \) calculated theoretically with the formula (1.3) indicated above.

Note: The diagram used in this phase is not the one used for pre-adjustment as it refers to the characteristics of \(\Delta p \text{Venturi} \)-Flow rate of the Venturi device inserted in the valve and not those of the entire valve (including the obturator), which instead are indicated in the diagrams used for pre-adjustment.

Correction for liquids with different densities
The following notes apply to liquids with viscosity \(\leq 3^\circ E \) (water and glycol mixtures, for example).
If using liquids with a density different to that of water at 20°C \((\rho = 1 \text{ kg/dm}^3) \), the head loss value \(\Delta p \) measured may be corrected using the formula:

\[
\Delta p' = \frac{\Delta p}{\rho'}
\]

where: \(\Delta p' \) = reference head loss
\(\Delta p \) = measured head loss
\(\rho' \) = liquid density in kg/dm\(^3\)

The value \(\Delta p' \) is used when pre-adjusting or measuring the flow rate using the diagrams or the formulas.
Example of pre-adjustment
A flow rate $G = 900$ l/h must create a head loss $\Delta p = 14$ kPa.
Choosing the diagram of the valve code 130600 size 1” gives an adjustment position = 2,3 (blue line).

Or, analytically, applying the formula (1.1) gives the value $K_v = 0,9 / \sqrt{0,14} = 2,40$.
From the table for the valve code 130600 1” you choose a corresponding adjustment position = 2,3 (value coinciding with or nearest the one required).

Example of correction for liquid with different density
Liquid density $\rho' = 1,1$ kg/dm3
Measured (or desired) head loss $\Delta p = 14$ kPa.
Reference head loss $\Delta p' = 14/1,1 = 12,72$ kPa
With this value you use the graph or the formula (1.1) and as a result you obtain the adjustment position for the flow rate G (new position = 2,5).

<table>
<thead>
<tr>
<th>DN 25</th>
<th>Position</th>
<th>K_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 1”</td>
<td>0.5</td>
<td>0.93</td>
</tr>
<tr>
<td>K_v m3/h</td>
<td>19</td>
<td>2.07</td>
</tr>
</tbody>
</table>

Example of flow rate measurement
Reading a $\Delta p_{Venturi}$ of 3 kPa on a 1” valve, using the characteristic Venturi diagram for the valve at issue, on the abscissa we read a flow rate value equal to $1,7$ m3/h (blue line).

Whereas, if we want to proceed analytically, using the equation (1.2), the measurement of a $\Delta p_{Venturi}$ equal to 3 kPa, bearing in mind that $K_{v_{Venturi}}$ of the valve 130600 size 1” is equal to 9,64, leads to calculating a flow rate $G = 9,64 \times \sqrt{0.03} = 1.67$ m3/h.

Example of correction for liquid with different density
Liquid density $\rho' = 1,1$ kg/dm3
Measured head loss $\Delta p_{Venturi} = 3$ kPa
Reference head loss $\Delta p' = 3/1,1 = 2,72$ kPa
With this value you use the valve’s Venturi diagram or the formula (1.2) and obtain the corresponding flow rate $G (= 1,59$ m3/h).

Example of manual flow rate adjustment
Considering a 1” valve, we would like to adjust the flow rate on a value of 2500 l/h.
Turn the knob of the valve onto the fully open position, then gradually close the valve, keeping under control $\Delta p_{Venturi}$ read off the measuring device. As shown in the diagram alongside, on reaching the differential value of $6,7$ kPa (red line), the flow rate of the medium that will flow through the valve will be the desired one of 2500 l/h.

Using the analytical method with a flow rate value equal to $G = 2500$ l/h and with $K_{v_{Venturi}} = 9,64$ for the valve 130600 size 1” at issue, using the formula (1.3) we have $\Delta p_{Venturi} = 2,5/9.64^{2} = 6.72$ kPa. Regulate the valve accordingly until you reach $\Delta p_{Venturi}$ as calculated.

Example of correction for liquid with different density
Desired liquid flow rate $G = 2,500$ l/h.
With the formula (1.3) or the Venturi graph, we obtain the reference head loss $\rho' = 1,1$ kg/dm3 $\Delta p_{Venturi}$, that we need to read off the measuring device, to have the desired flow rate, will be given by the equation:

$\Delta p_{Venturi} = \rho' \times \Delta p' = 1,1 \times 6,72 = 7,39$ kPa.
Code 130600 1" Pressure Drop vs Flow Rate Graph

<table>
<thead>
<tr>
<th>Position</th>
<th>Δp (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Δp (mm Hg)</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Code 130700 1 1/4" Pressure Drop vs Flow Rate Graph

<table>
<thead>
<tr>
<th>Position</th>
<th>Δp (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Δp (mm Hg)</td>
<td>3.24</td>
</tr>
</tbody>
</table>

Code 130800 1 1/2" Pressure Drop vs Flow Rate Graph

<table>
<thead>
<tr>
<th>Position</th>
<th>Δp (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Δp (mm Hg)</td>
<td>8.38</td>
</tr>
</tbody>
</table>

Code 130900 2" Pressure Drop vs Flow Rate Graph

<table>
<thead>
<tr>
<th>Position</th>
<th>Δp (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Δp (mm Hg)</td>
<td>17.00</td>
</tr>
</tbody>
</table>
130 Series flanged connections

Construction details

Obturator made of technopolymer plastic
The obturator for this series of valves is made of technopolymer plastic. This material is particularly resistant to abrasion due to the flow of water.

Adjustment knob
The shape of the adjustment knob is the outcome of research into ergonomics to ensure the greatest operator comfort and accurate adjustment.
- The range of adjustment with a number of complete turns permits great accuracy when balancing hydraulic circuits.
- The micrometric scale graduations are large and clear and make it easy to refine the flow rate adjustment.
- The knob is made of corrosion-proof technopolymer, for the sizes from DN 65 to DN 100; it is made of stamped steel, for sizes DN 125 and DN 150, as handwheel for easier adjustment of medium/large sized devices.

Reference scale for adjustment
The opening position is indicated by two numbered indicators:
- The turn indicator (1) shows an adjustment scale from 0 (closure) to maximum adjustment (6, 7, 10, 12 and 14 depending on the size of the valve) in red.
- Turning the knob manually through 360° causes the indicator to click by one unit.
- The micrometric adjustment indicator (2) shows numbers in black from 0 to 9.
Each change in the numerical position represents 1/10 of an opening/closing turn of the valve with respect to the turn indicator (1).

Memory stop
The valves are equipped with an adjustment position memory system that, after full closure, which may be necessary for various reasons, allows easy re-opening at the initial position.
Locking the position to be saved needs no special tools and is protected, to avoid improper use. Unscrew the threaded protective cap with a screwdriver, then insert the screwdriver in the knob and fully turn the internal screw clockwise.

Quick-fit pressure test ports
The valves are equipped with quick-fit pressure test ports. Measurement is fast and precise with this type of port, using Caleffi 100 series syringe fittings. When removing the measuring syringe, the port closes automatically, preventing water leakage.

Pressure measurement

Automatic reclosure

Safety cap

Seal element

Measuring syringe

For sizes DN 200–DN 300, the internal hexagonal screw (6 mm) of the "memory stop" is located under the central protective cap.
USING AND ADJUSTING THE BALANCING VALVE

The balancing valve is used considering the fluid dynamic characteristic produced by the relationship between the head loss measured at the piezometric connections, the flow rate and the obturator adjustment position.

Pre-adjustment
Knowing the value of the head loss \(\Delta p \) that needs to be created by the valve with a certain flow rate \(G \), you can obtain the adjustment position number for the knob (PRESETTING). To make this choice you can use the characteristic diagram for each valve size.

Or, analytically, you can calculate the corresponding \(K_v \) by applying the formula:

\[
K_v = \frac{G}{\Delta p}
\]

(1.1) where:
- \(G \) = flow rate in m\(^3\)/h
- \(\Delta p \) = head loss in bar
- \(K_v \) = flow rate in m\(^3\)/h for a head loss of 1 bar

and you compare the value obtained with the typical values for each valve size.

It is recommended to choose the valve size so it is pre-set on a medium opening position in order to have room for both opening and closing.

Flow rate measurement

By measuring \(\Delta p \) on the valve for a given adjustment position you can obtain the flow rate value \(G \) flowing through the valve itself. You can use the diagram or, analytically, you can calculate the flow rate by applying the equation:

\[
G = K_v \cdot \sqrt{\Delta p}
\]

(1.2)

Correction for liquids of different density

The following notes apply to liquids with viscosity \(\leq 3^\circ\text{E} \) (water and glycol mixtures, for example).

If using liquids with a density different to that of water at 20°C \((\rho = 1 \text{ kg/dm}^3)\), the head loss value \(\Delta p \) measured may be corrected using the formula:

\[
\Delta p' = \frac{\Delta p \cdot \rho}{\rho'}
\]

where:
- \(\Delta p' \) = reference head loss
- \(\Delta p \) = measured head loss
- \(\rho' \) = liquid density in kg/dm\(^3\)

The value \(\Delta p' \) is used when pre-adjusting or measuring the flow rate using the diagrams or the formulas.

Example of pre-adjustment

A flow rate \(G = 40 \text{ m}^3/\text{h} \) must create a head loss \(\Delta p = 8 \text{ kPa} \).

Choosing the diagram of the straight valve code 135102 DN 100 gives an adjustment position = 4 (blue line).

Or, analytically, applying the formula (1.1) gives the value \(K_v = 40 / \sqrt{0.08} = 141.84 \).

From the table for the valve code 135102 DN 100 you choose a corresponding adjustment position = 5 (value nearest the one required).

Example of correction for liquid with different density

Liquid density \(\rho' = 1.1 \text{ kg/dm}^3 \)

Measured (or desired) head loss \(\Delta p = 8 \text{ kPa} \).

Reference head loss \(\Delta p' = 8/1.1 = 7.27 \text{ kPa} \)

With this value you use the diagram or the formula (1.1) and obtain the corresponding adjustment position for the flow rate \(G \) (new position \(\approx 5.2 \)).

Example of flow rate measurement

You have the valve code 130102 DN 100 with the adjustment knob positioned on 2 (corresponding to \(K_v = 80.3 \) in the table) and you measure a head loss \(\Delta p = 15 \text{ kPa} \).

Using the diagram you obtain a flow rate value of \(G \) of approximately 30 m\(^3\)/h (red line).

\[
G = 80.3 \times \sqrt{15} = 31 \text{ m}^3/\text{h}
\]

Example of correction for liquid with different density

Liquid density \(\rho' = 1.1 \text{ kg/dm}^3 \)

Measured head loss \(\Delta p = 15 \text{ kPa} \)

Reference head loss \(\Delta p' = 15/1.1 = 13.63 \text{ kPa} \)

With this value you use the valve's Venturi diagram or the formula (1.2) and obtain the corresponding flow rate \(G \) (\(\approx 29.6 \text{ m}^3/\text{h} \)).
Installation

The balancing valves must be installed in such a way as to ensure free access to the pressure test ports, drain cocks and the adjustment knob. The valves can be fitted on either horizontal or vertical pipes. We recommend keeping the upstream and downstream sections of pipe straight, as shown in the illustrations below, to ensure accurate flow measurement. It is necessary to respect the flow direction shown on the valve body.

Circuit sizing with balancing valves

To obtain more detailed information on sizing a circuit with balancing valves, please refer to the 2nd volume of the Caleffi Handbooks. It gives numerical examples and notes on the application of the devices in circuits.
Code 130152 DN 150

<table>
<thead>
<tr>
<th>Position</th>
<th>Δp (kPa)</th>
<th>Δp (mm w.g.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position | Code 130 | DN 250 | Code 130 | DN 300 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position	Kvs		

Position	Kvs		

Code 130250 DN 250

<table>
<thead>
<tr>
<th>Position</th>
<th>Δp (kPa)</th>
<th>Δp (mm w.g.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position | Code 130 | DN 300 | Code 130 | DN 300 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position	Kvs		

Position	Kvs		

Code 130300 DN 300

<table>
<thead>
<tr>
<th>Position</th>
<th>Δp (kPa)</th>
<th>Δp (mm w.g.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position | Code 130 | DN 300 | Code 130 | DN 300 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Position	Kvs		

Position	Kvs		

Accessories

100010 Tech. broch. 01041

Pair of fittings with quick-fit syringe for connection of pressure test ports to measuring instruments.
Female 1/4” threaded connection.
Max. working pressure: 10 bar.
Max. working temperature: 110°C.
Accessories

Electronic flow rate and differential pressure measuring station 130 series

The electronic measuring station makes it possible to measure the water flow rate in air-conditioning systems. The system is composed of a Δp measuring sensor and a remote control unit (terminal) including the Caleffi Balance programming software. The terminal can be supplied already in the package or you can use your own Android® device by downloading the special app. The sensor measures the differential pressure and communicates with the terminal via Bluetooth®. May be used for flow rate measurement of 130 series balancing valves and of 683 series flow rate metering device. May be used for Δp measurements on automatic flow rate regulators. The software also contains the data of most of the commercially available balancing valves.

Product range

Code 130006 Electronic flow rate and differential pressure measuring station complete with remote control unit, with Android® app
Code 130005 Electronic flow rate and differential pressure measuring station without remote control unit, with Android® app

Technical specifications

Range of measurement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential pressure</td>
<td>0–1000 kPa</td>
</tr>
<tr>
<td>Static pressure</td>
<td>< 1000 kPa</td>
</tr>
<tr>
<td>System temperature</td>
<td>-30–120°C</td>
</tr>
</tbody>
</table>

Measurement accuracy

Differential pressure: < 0,1% of full scale

Sensor

- Battery capacity: 6600 mAh
- Operating time: 35 hours of continuous operation
- Charging time: 6 hours
- IP class: IP 65
- Ambient temperature of the instrument
 - During operation and charging: 0–40°C
 - During storage: -20–60°C
- Ambient humidity: maximum 90% relative humidity
- Sensor weight: 540 g
- Full case: 2.8 kg

Operating principle

The operator chooses the balancing valve from the list on the terminal (manufacturer, model, size and position with the corresponding Kv). The data of the valve, together with the measured Δp, are the basis for calculating the flow rate that is displayed on the terminal screen. If the valve on which you are making the measurement is not available in the database, it is still possible to enter the Kv value manually.

Methods of measurement

The complete device allows to choose 3 methods of measurement:

1) Measurement with set position. The display shows the flow rate calculated by the device in relation to the chosen valve and assigned position.
2) Measurement with set flow rate. The position is calculated to assign to the valve in order to obtain the desired flow rate.
3) Simple measurement Δp. The screen shows the differential pressure value measured by the sensor.

Characteristic components of the Δp measuring station

1. Upstream pressure test port
2. Downstream pressure test port
3. Setting by-pass knob
4. Mini USB port
5. Socket for charging
6. Ports for temperature probes (optional)
7. Bluetooth OFF
8. Reset button
9. ON/OFF button
10. Bluetooth indicator ON
11. Battery charging indicator
12. ON/OFF indicator

Characteristic components

- Measuring sensor
- 2 measuring pipes
- 2 measuring needles
- Touchscreen terminal with active licence and accessories
- Sensor battery charger
- Terminal battery charger
- Communication cable between terminal and PC
- Instructions with licence to download the Android® app (for code 130005)
- Instructions manual
- CD containing the instructions manual, measurement and balancing software, valve database and the report viewing tool.
- Calibration protocol. The sensor is supplied with a specific calibration protocol drawn up by a certified laboratory.
The values obtained with the measurements, and the corresponding valve data, can be saved and viewed directly on the terminal screen or sent to a PC for later processing.

The device lets you make measurements using the methods described above, see the results and save them.

The terminal provided in the package is already equipped with the Caleffi Balance software which is loaded with all the data relating to Caleffi balancing valves and the main balancing valves that are commercially available.

The CD-ROM also contains the Valve Browser software which provides a simulation of the measurement in order to estimate the behaviour of the various valves during the design phase.

SPECIFICATION SUMMARY

Code 130006

Code 130005
Electronic flow rate and differential pressure meter with no remote control unit, with Android® app. Supplied complete with shut-off valves and connection fittings. Differential pressure 0–1000 kPa. Static pressure: < 1000 kPa. System temperature: -30–120°C.

PC connection
The values obtained with the measurements, and the corresponding valve data, can be saved and viewed directly on the terminal screen or sent to a PC for later processing.

The Report Viewer software supplied on the CD-ROM in the package can be installed on a PC. It enables collecting the measured data and drafting a report. In addition, this software lets you load the project before making any measurements and export the data on the terminal to help save the measurements in an orderly fashion.

The CD-ROM also contains the Valve Browser software which provides a simulation of the measurement in order to estimate the behaviour of the various valves during the design phase.

Following the procedure described in the package you can download the Caleffi Balance app onto your terminal running the Android® operating system (Smartphone or Tablet).

It includes all the data relating to Caleffi balancing valves and the main balancing valves that are commercially available.

The device lets you make measurements using the methods described above, see the results and save them. In addition it enables a graphic display of the results.
To balance zone branches in circuits with three-way valves

To balance sanitary water distribution circuits

Application diagrams

To adjust the flow rate to each riser

To adjust the flow rate to each terminal

To balance circuits serving air conditioning units

To balance circuits that serve cooling towers
To balance the circuits that serve chiller unit evaporators or condensers.

To balance the various substations in district heating systems.

To balance the by-pass line of outside compensated temperature regulation circuits.

To balance circuits in primary secondary coupling.

To balance by-pass and direct lines in circuits with three-way valves.
130 series threaded version
Balancing valve with Venturi device, threaded version. Size DN 15 (from DN 15 to DN 50). Main connections 1/2” (from 1/2” to 2”) F (ISO 228-1). Quick-fit pressure test port connections on valve body 1/4” F (ISO 228-1). Body, control stem and seal seat made of dezincification resistant alloy, stainless steel obturator. EPDM hydraulic seals. PA6G30 control knob. Medium water and glycol solutions; maximum percentage of glycol 50%. Maximum working pressure 16 bar. Working temperature range -20–120°C. Accuracy ±10%. Knob with micrometric indicator. Number of adjustment turns 6. Locking/sealing and saving the adjustment position. Complete with quick-fit pressure test ports made of brass with EPDM seal elements.

130 series flanged version
Balancing valve, flanged version. Size DN 65 (from DN 65 to DN 300). Quick-fit pressure test port connections on valve body 1/4” F (ISO 228-1). Body and cover made of grey cast iron. Brass control stem, PPS obturator. EPDM hydraulic seals. PA knob for size DN 65 (DN 80, 100, 200, 250 and 300), stamped steel for size DN 125 (and DN 150). Medium water and glycol solutions; maximum percentage of glycol 50%. Maximum working pressure 16 bar. Working temperature range -10–140°C (-10–120°C for DN 200, 250 and 300). Accuracy ±10%. Knob with micrometric indicator. Number of adjustment turns 7 for size DN 65, DN 80 and 100; 12 DN 125; 15 DN 150; 11 from DN 200 to DN 300). Saving of the adjustment position. Complete with quick-fit pressure test ports made of brass with EPDM seal elements.

Code CBN130.00 insulation
Hot pre-formed shell insulation for balancing valves with threaded connections, 130 series. For heating and air-conditioning system. Material closed cell expanded PE-X. Thickness: 15 mm. Density: inner part 30 kg/m³, outer part 80 kg/m³; thermal conductivity (ISO 2581): at 0°C 0,038 W/(m·K), at 40°C 0,045 W/(m·K). Coefficient of resistance to the diffusion of water vapour (DIN 52615): >1300. Working temperature range: 0–100°C. Reaction to fire (DIN 4102): class B2.