CONTECA direct heat meter - MID directive - M-bus transmission

7554 series

Function

CONTECA is a direct heat energy meter especially suited to measuring thermal consumption in residential buildings. Thanks to its double memory register, it is able to keep a record of power in both heating and air-conditioning modes (option 755810).

The device comprises an electronic calculator unit, a positive displacement flow rate gauge and two temperature probes. The CONTECA meter is very easy to install and hardly requires any maintenance.

The CONTECA meter flow rate gauge is the turbine type. The turbine speed is measured by means of a high-resistance protected magnetic joint. As the mechanism is inside a vacuum there is no condensation. The mechanism block nut, made of non-magnetic material, prevents all attempted tampering.

The electronic technology and the materials used offer precise and reliable measurements.

The high-precision NTC temperature probes are easy to seal for greater protection against tampering. The cables connecting the flow and return probes to the calculator unit are 1.9 m long.

The CONTECA meter is equipped with an 8-digit liquid crystal display that can be turned on with a button, as it is normally off in order to minimise battery usage. This display enables easy reading of consumption values as well as a range of technical data to allow appliance operating status evaluation and data logging.

The CONTECA meter is able to acquire three additional pulse inputs and two additional alarm-status digital inputs, and is designed for centralised remote transmission (max. 250 modules) in M-Bus mode.

Product range

<table>
<thead>
<tr>
<th>7554 series</th>
<th>Heat meter</th>
<th>size 1/2” – 2” with union DN 65 – DN 200 flanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 755010</td>
<td>Touch-Screen controller</td>
<td></td>
</tr>
<tr>
<td>Code 755055/56</td>
<td>M-Bus interface - Remote transmission interface</td>
<td></td>
</tr>
<tr>
<td>7558 series</td>
<td>Additional options</td>
<td></td>
</tr>
</tbody>
</table>

Technical specifications

- Electric supply: 24 V (ac) - 50 Hz - 1 W
- Data transmission: in accordance with M-Bus method
- Anti-tamper protection
- Advanced control software
- Conformity: directive 2004/22/CE EN1434

Standard installation
Temperature probes

<table>
<thead>
<tr>
<th>Flow probe length</th>
<th>m</th>
<th>1.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return probe length</td>
<td>m</td>
<td>1.9</td>
</tr>
<tr>
<td>Probe type</td>
<td>NTC</td>
<td></td>
</tr>
<tr>
<td>Temperature range limits</td>
<td>°C</td>
<td>10–90 (THERMIE) - 2–25 (REFRIGERATION UNIT)</td>
</tr>
<tr>
<td>Temperature difference limits</td>
<td>K</td>
<td>3–80 (THERMIE) - 3–20 (REFRIGERATION UNIT)</td>
</tr>
<tr>
<td>Measurement sensitivity</td>
<td>°C</td>
<td>≤ 0.05</td>
</tr>
</tbody>
</table>

Positive displacement portion

- **Dimensions/Connection**: 1/2”–2”
- **Body**: Brass
- **Type of hydraulic connection**: Male with union ISO 228
- **Nominal pressure**: Threaded PN 10
- **Assembly**: normally horizontal
- **Pulse output**: see table 1 and 2
- **Maximum temperature of the medium**: 90°C
- **Protection class**: OA-OC in accordance with E1434-2

Microprocessor calculation unit

- **Centralised transmission**: in M-Bus mode
- **Ambient temperature range limits**: 5-45°C
- **Ambient classification**: MID 2004/22/CE E1-M1
- **Thermoelectric measurement unit**: 8-digit display
- **Electric supply**: 24 V (ac) - 1 W - 50 Hz
- **Protection class**: In accordance with DIN 40050: IP 54
- **Pulse inputs**: class IB in accordance with EN 1434-2

The CONTECA heat meter is supplied with accessories for installation, probe positioning and subsequent lead sealing.

TAB. 1 – Flow rate limits – Connections from 1/2” to 2”: 2 Y pockets (the flow pocket is fitted with filter mesh)

<table>
<thead>
<tr>
<th>Code</th>
<th>Connect.</th>
<th>Meas. type</th>
<th>Q</th>
<th>i/h</th>
<th>Q</th>
<th>p (mc/h)</th>
<th>Q</th>
<th>s (mc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>755404</td>
<td>1/2”</td>
<td>Single jet</td>
<td>30</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755405</td>
<td>3/4”</td>
<td>Single jet</td>
<td>50</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755406</td>
<td>1”</td>
<td>Multi jet</td>
<td>70</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755407</td>
<td>1 1/4”</td>
<td>Multi jet</td>
<td>120</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755408</td>
<td>1 1/2”</td>
<td>Multi jet</td>
<td>200</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755409</td>
<td>2”</td>
<td>Multi jet</td>
<td>300</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TAB. 2 – Flow rate limits (m³/h) – Connection from DN 65 to DN 200: 2 sleeves, 1/2”, to be welded, with brass pocket and 1 lead sealing kit

<table>
<thead>
<tr>
<th>Code</th>
<th>Connect.</th>
<th>Meas. type</th>
<th>Q</th>
<th>i/h</th>
<th>Q</th>
<th>p (mc/h)</th>
<th>Q</th>
<th>s (mc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>755410</td>
<td>DN 65</td>
<td>Woltmann</td>
<td>1.0</td>
<td>25</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755411</td>
<td>DN 80</td>
<td>Woltmann</td>
<td>1.4</td>
<td>45</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755412</td>
<td>DN 100</td>
<td>Woltmann</td>
<td>2.0</td>
<td>70</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755413</td>
<td>DN 125</td>
<td>Woltmann</td>
<td>3.5</td>
<td>100</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755414</td>
<td>DN 150</td>
<td>Woltmann</td>
<td>4.5</td>
<td>150</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755415</td>
<td>DN 200</td>
<td>Woltmann</td>
<td>8.0</td>
<td>250</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions

Technical data

Dimensions

Flow rate limits

- **Connection from DN 65 to DN 200**: Male with union ISO 228
- **Flanged PN 16 EN 1092-1**: Threaded PN 10
- **Threaded PN 10 Flanged PN 16**: in compliance with EN 1434-1 - MID 2004/22/CE

Threaded PN 10 Flanged PN 16

- **Electric supply**: 24 V (ac) - 1 W - 50 Hz
- **Protection class**: OA-OC in accordance with E1434-2

Protection class

- **Protection class**: OA-OC in accordance with E1434-2

Temperature probes

- **Flow probe length**: 1.9 m
- **Return probe length**: 1.9 m
- **Probe type**: NTC
- **Temperature range limits**: 10–90 (THERMIE) - 2–25 (REFRIGERATION UNIT)
- **Temperature difference limits**: 3–80 (THERMIE) - 3–20 (REFRIGERATION UNIT)
- **Measurement sensitivity**: ≤ 0.05°C

Positive displacement portion

- **Dimensions/Connection**: 1/2”–2”
- **Body**: Brass
- **Type of hydraulic connection**: Male with union ISO 228
- **Nominal pressure**: Threaded PN 10
- **Assembly**: normally horizontal
- **Pulse output**: see table 1 and 2
- **Maximum temperature of the medium**: 90°C
- **Protection class**: OA-OC in accordance with E1434-2

Microprocessor calculation unit

- **Centralised transmission**: in M-Bus mode
- **Ambient temperature range limits**: 5-45°C
- **Ambient classification**: MID 2004/22/CE E1-M1
- **Thermoelectric measurement unit**: 8-digit display
- **Electric supply**: 24 V (ac) - 1 W - 50 Hz
- **Protection class**: In accordance with DIN 40050: IP 54
- **Pulse inputs**: class IB in accordance with EN 1434-2

TAB. 1 – Flow rate limits – Connections from 1/2” to 2”: 2 Y pockets (the flow pocket is fitted with filter mesh)

<table>
<thead>
<tr>
<th>Code</th>
<th>Connect.</th>
<th>Meas. type</th>
<th>Q</th>
<th>i/h</th>
<th>Q</th>
<th>p (mc/h)</th>
<th>Q</th>
<th>s (mc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>755404</td>
<td>1/2”</td>
<td>Single jet</td>
<td>30</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755405</td>
<td>3/4”</td>
<td>Single jet</td>
<td>50</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755406</td>
<td>1”</td>
<td>Multi jet</td>
<td>70</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755407</td>
<td>1 1/4”</td>
<td>Multi jet</td>
<td>120</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755408</td>
<td>1 1/2”</td>
<td>Multi jet</td>
<td>200</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755409</td>
<td>2”</td>
<td>Multi jet</td>
<td>300</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TAB. 2 – Flow rate limits (m³/h) – Connection from DN 65 to DN 200: 2 sleeves, 1/2”, to be welded, with brass pocket and 1 lead sealing kit

<table>
<thead>
<tr>
<th>Code</th>
<th>Connect.</th>
<th>Meas. type</th>
<th>Q</th>
<th>i/h</th>
<th>Q</th>
<th>p (mc/h)</th>
<th>Q</th>
<th>s (mc/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>755410</td>
<td>DN 65</td>
<td>Woltmann</td>
<td>1.0</td>
<td>25</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755411</td>
<td>DN 80</td>
<td>Woltmann</td>
<td>1.4</td>
<td>45</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755412</td>
<td>DN 100</td>
<td>Woltmann</td>
<td>2.0</td>
<td>70</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755413</td>
<td>DN 125</td>
<td>Woltmann</td>
<td>3.5</td>
<td>100</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755414</td>
<td>DN 150</td>
<td>Woltmann</td>
<td>4.5</td>
<td>150</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>755415</td>
<td>DN 200</td>
<td>Woltmann</td>
<td>8.0</td>
<td>250</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions

Flow rate limits

- **Connection from DN 65 to DN 200**: Male with union ISO 228
- **Flanged PN 16 EN 1092-1**: Threaded PN 10
- **Threaded PN 10 Flanged PN 16**: in compliance with EN 1434-1 - MID 2004/22/CE

Threaded PN 10 Flanged PN 16

- **Electric supply**: 24 V (ac) - 1 W - 50 Hz
- **Protection class**: OA-OC in accordance with E1434-2
Pre-installation guidelines

It is good practice to provide shut-off valves upstream and downstream of the meter in order to facilitate installation and maintenance, if required. Upstream from the flow rate gauge, it is necessary to fit a filtering device in order to protect the gauge. From diameter 1/2" to diameter 2", this filter is already inside the flow temperature pocket. After installation, it is good practice to wash the pipes and carry out a pressure test. After washing and before installing the temperature probes, it is wise to check the mesh filter saturation level. When work has been completed, qualified technicians will lead seal the electronic module and the temperature probes.

Hydraulic installation diagrams

Normally the flow rate gauge should be installed on the return pipe. The hydraulic diagrams given below show:

a) Positioning the gauge
The flow rate gauge should preferably be installed in a horizontal position with the turbine axis vertical, respecting the flow direction indicated by the arrow on the body, and so that it is in standby when there is no service.

b) Positioning the probes
The temperature probes (by means of the pocket or sleeve according to the DN) must be positioned on the corresponding flow/return pipes. The corresponding flow and return pipes are understood to be the ones involved with the same flow rate when the flow has started.

1) Diagram of system with metering on manifold with several stages.
The dotted red line indicates the head loss ($\Delta p = 2$ m. w.g.) for threaded connections and ($\Delta p = 2$ m. w.g.) for flanged connections referring to the permanent flow rate (Q_p).

Maintenance work

Filter cleaning

Sometimes it will be necessary to clean the filter installed in the flow circuit in a suitable position for the protection of the flow rate gauge.

By observing the instantaneous flow rate and thermal gradient values (flow rate significantly reduced in relation to the nominal user value and thermal gradient significantly increased), it is easy to work out whether the filter is saturated and then clean it as necessary.

Metering variants (systems with 4 pipes)

The CONTECA system is able, after the software has been activated (see refrigeration unit option code 755810), to keep separate records of the thermie and refrigeration units. The CONTECA system also makes it possible to keep a record of thermie and refrigeration units in a four-pipe distribution system.

For a 7554 series complete meter with the addition of just 1 pulse positive displacement meter code 75591, of 2 pockets code 75590, and of 2 probes code 75593, it is possible to take two complete and separate thermie/refrigeration unit measurements.

Hydraulic characteristics

Positive displacement meter + pockets for probe (if threaded connection)

The chart shows the relationship between flow rate (Q) and pressure drop (Δp) for different pipe sizes and connection types. The dotted red line indicates the head loss ($\Delta p = 2$ m. w.g.) for threaded connections and ($\Delta p = 2$ m. w.g.) for flanged connections referring to the permanent flow rate (Q_p).
The CONTECA heat meter features various metering configurations referring to two-pipe or four-pipe and aggregated pulse acquisition systems that determine set connection positions.

Two-pipe system

1) **Thermie and/or refrigeration unit metering**

<table>
<thead>
<tr>
<th>Zone valve status*</th>
<th>Mass meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - 7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow temperature probe (FT)</th>
<th>Return temperature probe (RT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 - 20</td>
<td>18 - 19</td>
</tr>
</tbody>
</table>

2) **Pulse acquisition (Type OA-OC)**

2.1) **A single pulse meter**

<table>
<thead>
<tr>
<th>DHW or DCW (Ist pulse consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 11</td>
</tr>
</tbody>
</table>

2.2) **Two pulse meters**

<table>
<thead>
<tr>
<th>DHW (Ist pulse consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DCW (IIId pulse consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 - 13</td>
</tr>
</tbody>
</table>

2.2) **Three pulse meters**

<table>
<thead>
<tr>
<th>DHW (Ist pulse consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DCW (IIId pulse consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 - 13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generic (IIId pulse consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 - 14</td>
</tr>
</tbody>
</table>

Four-pipe system

1) **Thermie and/or refrigeration unit metering**

<table>
<thead>
<tr>
<th>Heating zone valve status*</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 - 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cooling zone valve status*</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 - 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heating mass meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 - 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cooling mass meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heating flow temperature probe (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 - 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cooling return temperature probe (RT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 19</td>
</tr>
</tbody>
</table>

2) **Pulse acquisition**

2.1) **A single pulse meter**

<table>
<thead>
<tr>
<th>DHW or DCW (Ist pulse consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 - 13</td>
</tr>
</tbody>
</table>

2.2) **Two pulse meters**

<table>
<thead>
<tr>
<th>DHW (Ist pulse consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 - 13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DCW (IIid pulse consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 - 14</td>
</tr>
</tbody>
</table>

*connection obligatory for certification
• Data centralisation
In the case of centralised data transmission via bus the following connection plan must necessarily be carried out:

1-2 Centralised power supply 24 V (ac)
3-5 Polarised transmission bus
3 Tx (Transmission)
5 Rx (Reception)

For the transmission bus, use an unshielded 2 x 1 mm² FROR 450/750 2x1 CEI 20-2211 IMQ cable (our code 755855/N).
Note: The transmission polarity must be fully observed.

• Energy pulse outputs, code 755881/755882

21-23 Remote thermie totaliser output (kWh) (Type OC)
21-22 Remote refrigeration unit totaliser output (kWh) (Type OC)

These outputs can be connected to our code 755890 (remote energy totaliser) or a general supervisor.

Output specifications:
1 IMP = 1 kWh - open collector contact
Pulse duration: 120 ms
Max. frequency = 1 Hz

• Output relay code 755871
Relay 8 A - 230 V (ac) - 50 Hz
24-25 N/O
25-26 N/C

• Digital inputs
The digital inputs must have no potential (class IB)
6-7 Privileged to connect the ON/OFF status of the zone valve. For the ON times an internal register is increased by the hours of opening.
7-8 General status and/or alarm input

Notes: - If centralised data transmission is used, the 24 V (ac) electricity supply line should be used solely for that purpose and not directly controlled by the user.
- Each 7554 series device is supplied with an anti-tamper lead sealing kit for the temperature probes and for the plastic electronics box.
- Help the cables to pass through by breaking and shaping the plastic partition in the cable fairlead. The basic function of the partition is to protect the electronics card from dust and jets of water.

Operating information
The accumulated energy amounts are retrieved in a non-volatile memory device (EEPROM) each time the units of measurement are completed (1 kWh) and, at the same time, this increase causes the display to be updated (see User information cycle).

- When the electricity mains is connected (24 V (ac)), the following occurs:
 - display always on
 - metering always enabled
- If the electricity mains is not connected, the following occurs:
 - display off but can be activated for 20 seconds each time the “PUSH” button is pressed.

User information cycle
The heat meter is equipped with a liquid crystal display. The display is activated by pressing the button on the front. By repeatedly pressing the button briefly it is possible to scroll through the various information windows.
In order to extend the battery life, the display is switched off 30 s after the probe button was last pressed.
Test instructions

The 7554 series calculator is equipped with a quick output test feature, located inside the plastic container. In order to access this, remove the seal and take out the fixing screws.

The electronics card on the deepest level has a button on the very edge of the right-hand side (fig. 1) which can be used to select the technical menu.

Use the button (push) on the display front panel to scroll through the screens. The unit of measurement for the energy - test is Wh (fig. 2).

The pulse input can be simulated by connecting pins 9 - 10 (fig. 3). The maximum input frequency is 1 Hz.

![fig. 1](image)

![fig. 2](image)

![fig. 3](image)

Operating specifications

1) The software used to control the metering process, in order to avoid unnecessary action or unwanted metering procedures, operates on the principle that consumption processing depends on a specific flow temperature value (FT).

The thermie cycle is activated for a FT value >22°C (factory set).

The refrigeration unit cycle is activated for a FT value <15°C (factory set).

The set values may be modified by an authorised technician on request.

2) The software used to control the metering process also operates on the principle that consumption processing depends on the presence of a minimum temperature difference in order to further safeguard against unnecessary measurements or minimal unwanted metering deriving from natural dispersion. At the time of factory setting, a dead band of 0,4 K (factory set) is therefore defined.

3) The software used to control the metering process also works on the principle that the flow rate gauge is installed on the return pipe. Authorised technicians can, on request, adapt the configuration set so as to position the gauge on the flow pipe.

The probes, which are absolutely inseparable from the electronics circuit, may be placed in a thermostatic bath, observing the temperature range 10–90°C and taking into account a ΔT of between 3–80 K.

The energy increases on the basis of the following equation:

\[\Delta E = K \cdot \Delta T \cdot \Delta V \cdot 0.2777698 \cdot 10^{-3} \ [\text{Wh}] \]

where

- \(K \) = heat coefficient \([\text{kJ/m}^3\text{K}]\)
- \(\Delta T \) = temperature variation \([\text{K}]\)
- \(\Delta V \) = volume variation \([\text{litre}]\)
- \(\Delta V = N \cdot P \)

 where

 - \(N \) = number of pulses
 - \(P \) = pulse value for each litre

If the errors, after the metrological checking of the CONTECA meter in the 7554 series, are greater than the max. permitted value, the product should be sent to the Caleffi S.p.A. head office; 28010 Fontaneto d’Agogna; S.R. 229 n° 25; ITALY, for metrological requalification.
Architecture of centralisation

- It is understood that every individual may have a specific idea relating to the complexity of the system and personal expectations.

- It is also understood, for this very reason, that in general there is no divine law governing the drafting of a particular architecture. It is therefore true to say that an increase in the number of users, combined with the application of a centralised system, will necessarily increase the complexity of this system.

In order to distinguish between a “normal” system and a “complex” system, you could argue that a centralised system with over 25 users could be a “complex” system which, for many obvious management-related reasons, practically requires continuous monitoring.

Therefore, if the distinction made can, in principle, be perceived as correct, you can establish the following:

- **WORKS for a NORMAL SYSTEM**
 - Metering system
 - Laying down central power supply
 - Laying down transmission bus (code 755855/N)
 - Using FAST INTERFACE (code 755055) alternatively:
 - Using FAST/REMOTE INTERFACE (code 755056)
 - Using modem (code 755845 - 755846)

- **WORKS for COMPLEX SYSTEMS (25 users or more)**
 - Metering system
 - Laying down central power supply
 - Laying down transmission bus (code 755855/N)
 - Using CONTECA controller (code 755010)
 - Using GSM modem (code 755846)
 - Using data breakdown software (code 755830)
 - and as an option
 - Individual user control (code 755871)

N.B.

The transmission bus code 755855/N is a 2-way device (section 2 x 1 mm²). The controller allows a **maximum of 250 users**. The laying methods are in accordance with tree distribution (star).

The maximum length of each individual section is 1200 m. It is possible to lay up to a **maximum of 4 separate sections**, using code 755005.
7550 CONTECA controller

- Electric supply: 230 V (ac) ±10% - 50 Hz - 60 W.
- Ambient conditions 10–35°C with no dust.
- Maximum number of users: 250.

Includes:
- 1 touch-screen CPU
- 1 wall-mounting bracket

The controller has the following features:
- 1 touch-screen LCD monitor for viewing consumption and user data.
- 1 RS232 port
- 1 RS485 port
- 2 USB ports
- 1 LAN port

The function of the controller is to acquire, via bus, all the totalised values of the individual users (thermie / refrigeration units / mass / hours of opening of the zone valve), consumer operating status (ON/OFF), totalised values from the additional pulse meters (domestic cold/hot water) and operational diagnostics.

All the above-described totalised values are recorded on a daily basis in log files that are useful for consumption analysis and cost breakdown. The remote transmission and print software for consumption data is supplied with the product.

7558 OUT device

In centralised transmission and CONTECA controller mode (code 755010) the heating / cooling function can be activated / deactivated remotely via SMS for every individual user. Relay out specifications: 8 A - 230 V (ac) - cos 4 = 1.

- MANAGER version - connection in SERIES

Residences and hotels are particularly suitable types of users.

755845 external 56 K analogue modem

External 56K analogue modern includes:
- 230 V (ac) - 50 Hz - 10 W power supply unit
- Telephone cable
- Serial cable
- Quick start guide for the installation of the drivers with CD-ROMs.
- RS232C serial port interface / Standard V.92

Activating remote transmission via modem makes it possible to transfer the log files, over a telephone line, onto a remote personal computer.

755846 Digital GSM modem

The modem is supplied with an activation request module. It is the customer's responsibility to activate the SIM card. Activating remote transmission via modem makes it possible to transfer the log files, over a telephone line, onto a remote personal computer and to send activation / deactivation SMS messages.

The GSM modem is a dual-band GSM900/1800 device which is capable of managing AT Modem commands. It is an external device and includes:
- Power supply unit with input 230 V (ac) 50 Hz - 3 VA / Output 8-30 V (dc)
- Quick start guide for the installation of the drivers with CD-ROMs.
- FME-F antenna connector for antenna cable
- 9-pole sub-D female connector V.24/V.28 for RS 232C serial port output

Operating specifications:
- Dual-Band GSM900 and GSM1800
- GSM compatible phase 2/2+

Output power:
- Class 4 (2W) GSM900
- Classe (1W) GSM1800

SMS specifications:
- Point to Point Mobile Originated
- Point to Point Mobile Terminated
- SMS Cell Broadcast

Holiday homes are a particularly suitable application.

755871

In this regard, entering a database of enabled phone numbers for a specific user on the controller is the user's security code. It is possible to add up to 3 enabled cellphone numbers.

<table>
<thead>
<tr>
<th>ID</th>
<th>TEL. 1</th>
<th>TEL. 2</th>
<th>TEL. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>………..</td>
<td>………..</td>
<td>………..</td>
</tr>
<tr>
<td>2</td>
<td>………..</td>
<td>………..</td>
<td>………..</td>
</tr>
<tr>
<td>3</td>
<td>………..</td>
<td>………..</td>
<td>………..</td>
</tr>
</tbody>
</table>

Any change in the enabled phone numbers can only be made by technical personnel authorised by the system manager (Administrator - Service - Certifier).
Consumption certification

The natural difficulties in starting up a centralised system suggest it is wise to rely on a competent SERVICE, monitoring the first year of operation and then hopefully confirming this service for future years.

Relying on a competent service means:
- Having installed a centralized transmission system (controller code 755010 and modem, GSM code 755846).
- Formally providing the service company with consent for the processing of your personal data.

and therefore:
- On request, Caleffi (via a regional service) offers FREE monitoring of consumption data for the first year of operation.
- Caleffi sends monthly reports on the CERTIFIED consumption to the administration manager of the complex.

At the end of the first year of operation, Caleffi, through its own regional services, offers product service and consumption certification contractors in times and manners to be defined.

ELECTRIC-ELECTRONIC OPTIONS

755830 Software for the breakdown of costs relating to heat consumption

The software can be used to transfer or manage log files containing consumption data; these log files are transferred as necessary onto an office PC to produce a printout of consumption and heating cost breakdown (thermie and refrigeration units), as well as any additional consumption (domestic water/electricity/gas).

The reports are generated in Windows.

N.B.: A comprehensive installation and user guide manual is an aid to performing the various operational steps.

75588 Pulse output

The pulse output can be used to transfer the thermie and/or refrigeration unit energy values to a generic acquirer. The pulse weighs 1 kWh.

The pulse output with no potential is an open collector with pulse period 120 ms - Vmax 24 V (dc).

Code
755881 Single pulse output - THERMIE
755882 Double pulse output - THERMIE/REFRIGERATION UNITS

755890 Remote energy totaliser

Electronic 8-digit LCD totaliser equipped with cover plate for three-slot recessed electric box.

Lithium battery: duration 8 years - max. frequency 20 Hz
Suitable for pulse outputs code 75588.
Cable length (2x1 mm²) not supplied by us: max. 150 m.

755810 Refrigeration unit metering

The CONTECA meter, once the software module has been activated, is able to keep a record of the thermie and refrigeration units in separate registers through the evaluation of the thermal gradient inversion, both for current values and for log files.

755825 Pulse input acquisition generic

The CONTECA module can, through the application of Hardware/Software code 755825, acquire an additional pulse input (as well as the 2 already dedicated to DHW and DCW). Sometimes, and normally when there is a controller (code 755010, it is beneficial to use the bus to transfer the user data in terms of consumption (gas meter / electricity meter). The generic pulse input must have no potential (no voltage, maximum frequency 1 Hz). Class IB. Residences and hotels are particularly suitable types of users.
7554 series
CONTECA direct heat meter **conforming to directive 2004/22/CE (MID)** for use in heating and air-conditioning systems, with the following characteristics: hot water positive displacement meter **with magnetic joint** (maximum temperature 90°C), with pulse output, NTC temperature probe, 8-digit data display, temperature range 10–90°C, protection class IP 54, transmission via **TWO-WAY** bus in accordance with M-bus mode, electric supply 24 V (ac) 50 Hz - 1 W. Designed for **remote activation** of user services. **Options:** 3 additional pulse inputs - 2 voltage-free digital inputs for status/alarm - 1 relay output.

<table>
<thead>
<tr>
<th>Code 755010</th>
<th>Compact touch-screen CONTECA controller, equipped with RS232 - RS485, USB and LAN ports, with user monitoring function (max. 250) and daily logging of consumption data. Enabled for SMS message alarm and remote activation management, and for automatic transmission of data via email and FTP server. Electric supply 230 V (ac).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 755055/755056</td>
<td>HW-SW interface for consumption data acquisition via digital transmission, in M-Bus mode. Electric supply 230 V (ac) - 50 Hz - 5 VA. Includes software. Maximum number of users: 30. Code 755056 is designed for transmission via analogue/digital modem code 755845/755846. Ambient temperature range 10–35°C. Dimensions: width 160 mm x height 125 mm x depth 40 mm.</td>
</tr>
</tbody>
</table>

7940 series
User domestic water cut-off for centralised system with user module **featuring direct local reading meter**, consisting of: 1/2" (3/4") direct reading positive displacement meter, BALLSTOP ball shut-off valve with incorporated check valve, ball shut-off valve with male terminal, fixing screws and collars.

| **Code 7940** | User domestic water cut-off for centralised CONTECA system with user module **featuring direct local reading meter**, consisting of: 1/2" (3/4") direct reading positive displacement meter, BALLSTOP ball shut-off valve with incorporated check valve, ball shut-off valve with male terminal, fixing screws and collars. |

7941 series
User domestic water cut-off for centralised CONTECA system consisting of: 1/2" (3/4") **positive displacement meter with pulse output** (K=10), BALLSTOP ball shut-off valve with incorporated check valve, ball shut-off valve with male terminal, fixing screws and collars.

Code 755810	Refrigeration unit metering. Upon activation of the software module, CONTECA is able to keep a record of the thermal units and refrigeration units, on the evaluation of the temperature difference reversal, in separate registers for both the current values and for the logged files.
Code 75588	The single pulse output code 755881 or the double pulse output code 755882 can be used to transfer the thermie and/or refrigeration unit energy values to a generic acquirer. **The pulse weighs 1 kWh.** The pulse output with no potential is **open collector** with pulse time 120 ms - Vmax 24 V (dc).
Code 755890	Electronic 8-digit LCD totaliser equipped with cover plate for **three-slot recessed electric box**. Lithium battery: duration 8 years - maximum frequency 20 Hz. Suitable for pulse outputs code 75588. Cable length (2x1 mm²) not supplied by us: maximum 150 mm.
We reserve the right to change our products and their relevant technical data, contained in this publication, at any time and without prior notice.

CONTECA 7554 series

With reference to CONTECA 7554 series heat meters, please note that the procedure for conformity to the requirements of directive 2004/22/EC, better known as the MID (Measuring Instruments Directive), has been completed.

This directive has been made binding in Italy by means of Italian Law Decree N° 22 dated 2nd February 2007, which makes it obligatory to use only meters that conform to the MID within the Italian market.

Typical examination certificate (in accordance with form B - MID directive)

Certificate of conformity for production process (in accordance with form D - MID directive)